PICZL: Image-based Photometric Redshifts for AGN
- URL: http://arxiv.org/abs/2411.07305v2
- Date: Wed, 13 Nov 2024 15:29:10 GMT
- Title: PICZL: Image-based Photometric Redshifts for AGN
- Authors: William Roster, Mara Salvato, Sven Krippendorf, Aman Saxena, Raphael Shirley, Johannes Buchner, Julien Wolf, Tom Dwelly, Franz E. Bauer, James Aird, Claudio Ricci, Roberto J. Assef, Scott F. Anderson, Xin Liu, Andrea Merloni, Jochen Weller, Kirpal Nandra,
- Abstract summary: We introduce PICZL, a machine-learning algorithm leveraging an ensemble of CNNs.
PICZL integrates distinct SED features from images with those obtained from catalog-level data.
On a validation sample of 8098 AGN, PICZL achieves a variance $sigma_textrmNMAD$ of 4.5% with an outlier fraction $eta$ of 5.6%.
- Score: 1.5194351731792657
- License:
- Abstract: Computing photo-z for AGN is challenging, primarily due to the interplay of relative emissions associated with the SMBH and its host galaxy. SED fitting methods, effective in pencil-beam surveys, face limitations in all-sky surveys with fewer bands available, lacking the ability to capture the AGN contribution to the SED accurately. This limitation affects the many 10s of millions of AGN clearly singled out and identified by SRG/eROSITA. Our goal is to significantly enhance photometric redshift performance for AGN in all-sky surveys while avoiding the need to merge multiple data sets. Instead, we employ readily available data products from the 10th Data Release of the Imaging Legacy Survey for DESI, covering > 20,000 deg$^{2}$ with deep images and catalog-based photometry in the grizW1-W4 bands. We introduce PICZL, a machine-learning algorithm leveraging an ensemble of CNNs. Utilizing a cross-channel approach, the algorithm integrates distinct SED features from images with those obtained from catalog-level data. Full probability distributions are achieved via the integration of Gaussian mixture models. On a validation sample of 8098 AGN, PICZL achieves a variance $\sigma_{\textrm{NMAD}}$ of 4.5% with an outlier fraction $\eta$ of 5.6%, outperforming previous attempts to compute accurate photo-z for AGN using ML. We highlight that the model's performance depends on many variables, predominantly the depth of the data. A thorough evaluation of these dependencies is presented in the paper. Our streamlined methodology maintains consistent performance across the entire survey area when accounting for differing data quality. The same approach can be adopted for future deep photometric surveys such as LSST and Euclid, showcasing its potential for wide-scale realisation. With this paper, we release updated photo-z (including errors) for the XMM-SERVS W-CDF-S, ELAIS-S1 and LSS fields.
Related papers
- Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution [10.074968164380314]
Implicit Neural Representation (INR) has been successfully employed for Arbitrary-scale Super-Resolution (ASR)
It is computationally expensive to query numerous times to render each pixel.
Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks.
arXiv Detail & Related papers (2025-01-12T15:14:58Z) - Annotation Cost-Efficient Active Learning for Deep Metric Learning Driven Remote Sensing Image Retrieval [3.2109665109975696]
ANNEAL aims to create a small but informative training set made up of similar and dissimilar image pairs.
The informativeness of image pairs is evaluated by combining uncertainty and diversity criteria.
This way of annotating images significantly reduces the annotation cost compared to annotating images with land-use land-cover class labels.
arXiv Detail & Related papers (2024-06-14T15:08:04Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images.
We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios.
arXiv Detail & Related papers (2023-11-30T21:11:20Z) - Combining UPerNet and ConvNeXt for Contrails Identification to reduce
Global Warming [0.0]
This study focuses on aircraft contrail detection in global satellite images to improve contrail models and mitigate their impact on climate change.
An innovative data preprocessing technique for NOAA GOES-16 satellite images is developed, using temperature data from the infrared channel to create false-color images, enhancing model perception.
To tackle class imbalance, the training dataset exclusively includes images with positive contrail labels.
arXiv Detail & Related papers (2023-10-07T13:59:05Z) - Multi-Modal Multi-Task (3MT) Road Segmentation [0.8287206589886879]
We focus on using raw sensor inputs instead of, as it is typically done in many SOTA works, leveraging architectures that require high pre-processing costs.
This study presents a cost-effective and highly accurate solution for road segmentation by integrating data from multiple sensors within a multi-task learning architecture.
arXiv Detail & Related papers (2023-08-23T08:15:15Z) - Noise Self-Regression: A New Learning Paradigm to Enhance Low-Light Images Without Task-Related Data [86.68013790656762]
We propose Noise SElf-Regression (NoiSER) without access to any task-related data.
NoiSER is highly competitive in enhancement quality, yet with a much smaller model size, and much lower training and inference cost.
arXiv Detail & Related papers (2022-11-09T06:18:18Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
We reform the conv layer by resorting to the scale-space theory.
We build a novel style named SCale AttentioN Conv Neural Network (textbfSCAN-CNN)
As a single-shot scheme, the inference is more efficient than multi-shot fusion.
arXiv Detail & Related papers (2022-09-19T06:35:04Z) - Highly Accurate Dichotomous Image Segmentation [139.79513044546]
A new task called dichotomous image segmentation (DIS) aims to segment highly accurate objects from natural images.
We collect the first large-scale dataset, DIS5K, which contains 5,470 high-resolution (e.g., 2K, 4K or larger) images.
We also introduce a simple intermediate supervision baseline (IS-Net) using both feature-level and mask-level guidance for DIS model training.
arXiv Detail & Related papers (2022-03-06T20:09:19Z) - Sketch and Scale: Geo-distributed tSNE and UMAP [75.44887265789056]
Running machine learning analytics over geographically distributed datasets is a rapidly arising problem.
We introduce a novel framework: Sketch and Scale (SnS)
It leverages a Count Sketch data structure to compress the data on the edge nodes, aggregates the reduced size sketches on the master node, and runs vanilla tSNE or UMAP on the summary.
We show this technique to be fully parallel, scale linearly in time, logarithmically in memory, and communication, making it possible to analyze datasets with many millions, potentially billions of data points, spread across several data centers around the globe.
arXiv Detail & Related papers (2020-11-11T22:32:21Z) - RGB2LIDAR: Towards Solving Large-Scale Cross-Modal Visual Localization [20.350871370274238]
We study an important, yet largely unexplored problem of large-scale cross-modal visual localization.
We introduce a new dataset containing over 550K pairs of RGB and aerial LIDAR depth images.
We propose a novel joint embedding based method that effectively combines the appearance and semantic cues from both modalities.
arXiv Detail & Related papers (2020-09-12T01:18:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.