Ensemble Learning for Microbubble Localization in Super-Resolution Ultrasound
- URL: http://arxiv.org/abs/2411.07376v1
- Date: Mon, 11 Nov 2024 21:26:36 GMT
- Title: Ensemble Learning for Microbubble Localization in Super-Resolution Ultrasound
- Authors: Sepideh K. Gharamaleki, Brandon Helfield, Hassan Rivaz,
- Abstract summary: Super-resolution ultrasound (SR-US) is a powerful imaging technique for capturing microvasculature and blood flow at high spatial resolution.
In this paper, we explore the potential of ensemble learning techniques to enhance microbubble (MB) localization.
- Score: 1.912429179274357
- License:
- Abstract: Super-resolution ultrasound (SR-US) is a powerful imaging technique for capturing microvasculature and blood flow at high spatial resolution. However, accurate microbubble (MB) localization remains a key challenge, as errors in localization can propagate through subsequent stages of the super-resolution process, affecting overall performance. In this paper, we explore the potential of ensemble learning techniques to enhance MB localization by increasing detection sensitivity and reducing false positives. Our study evaluates the effectiveness of ensemble methods on both in vivo and simulated outputs of a Deformable DEtection TRansformer (Deformable DETR) network. As a result of our study, we are able to demonstrate the advantages of these ensemble approaches by showing improved precision and recall in MB detection and offering insights into their application in SR-US.
Related papers
- A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
This work introduces a Flow-based Truncated Denoising Diffusion Model for super-resolution MRSI.
It shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network.
We demonstrate that FTDDM outperforms existing generative models while speeding up the sampling process by over 9-fold.
arXiv Detail & Related papers (2024-10-25T03:42:35Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Resolution- and Stimulus-agnostic Super-Resolution of Ultra-High-Field Functional MRI: Application to Visual Studies [1.8327547104097965]
High-resolution fMRI provides a window into the brain's mesoscale organization.
Yet, higher spatial resolution increases scan times, to compensate for the low signal and contrast-to-noise ratio.
This work introduces a deep learning-based 3D super-resolution (SR) method for fMRI.
arXiv Detail & Related papers (2023-11-25T03:33:36Z) - Learning Super-Resolution Ultrasound Localization Microscopy from
Radio-Frequency Data [8.312810360920107]
We propose to feed Radio-Frequency (RF) data into a super-resolution network while bypassing DAS beamforming and its limitations.
Results from our RF-trained network suggest that excluding DAS beamforming offers a great potential to optimize on the ULM resolution performance.
arXiv Detail & Related papers (2023-11-07T15:47:38Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - Single MR Image Super-Resolution using Generative Adversarial Network [0.696125353550498]
Real Enhanced Super Resolution Generative Adrial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images.
In this paper, we apply this method to enhance the spatial resolution of 2D MR images.
arXiv Detail & Related papers (2022-07-16T23:15:10Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Simultaneous super-resolution and motion artifact removal in
diffusion-weighted MRI using unsupervised deep learning [23.33029012277273]
We propose a fully unsupervised quality enhancement scheme, which boosts the resolution and removes the motion artifact simultaneously.
To the best of our knowledge, the proposed method is the first to tackle super-resolution and motion artifact correction simultaneously in the context of MRI using unsupervised learning.
arXiv Detail & Related papers (2021-05-01T13:13:53Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.