論文の概要: Feature-Space Semantic Invariance: Enhanced OOD Detection for Open-Set Domain Generalization
- arxiv url: http://arxiv.org/abs/2411.07392v1
- Date: Mon, 11 Nov 2024 21:51:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:18:32.766277
- Title: Feature-Space Semantic Invariance: Enhanced OOD Detection for Open-Set Domain Generalization
- Title(参考訳): 特徴空間セマンティック不変性:オープンセット領域一般化のためのOOD検出の強化
- Authors: Haoliang Wang, Chen Zhao, Feng Chen,
- Abstract要約: 本稿では、FSI(Feature-space Semantic Invariance)を導入して、オープンセット領域の一般化のための統一的なフレームワークを提案する。
FSIは機能領域内の異なるドメイン間のセマンティック一貫性を維持しており、見えないドメイン内のOODインスタンスをより正確に検出することができる。
また、新しいドメインスタイルやクラスラベルで合成データを生成するために生成モデルを採用し、モデルロバスト性を高めます。
- 参考スコア(独自算出の注目度): 10.38552112657656
- License:
- Abstract: Open-set domain generalization addresses a real-world challenge: training a model to generalize across unseen domains (domain generalization) while also detecting samples from unknown classes not encountered during training (open-set recognition). However, most existing approaches tackle these issues separately, limiting their practical applicability. To overcome this limitation, we propose a unified framework for open-set domain generalization by introducing Feature-space Semantic Invariance (FSI). FSI maintains semantic consistency across different domains within the feature space, enabling more accurate detection of OOD instances in unseen domains. Additionally, we adopt a generative model to produce synthetic data with novel domain styles or class labels, enhancing model robustness. Initial experiments show that our method improves AUROC by 9.1% to 18.9% on ColoredMNIST, while also significantly increasing in-distribution classification accuracy.
- Abstract(参考訳): オープンセットドメインの一般化は、未確認領域(ドメインの一般化)をまたいで一般化するためのモデルをトレーニングし、トレーニング中に遭遇しない未知のクラスからのサンプルを検知する(オープンセット認識)という現実的な課題に対処する。
しかし、既存のほとんどのアプローチはこれらの問題に別々に取り組み、実践的な適用性を制限している。
この制限を克服するために、FSI(Feature-space Semantic Invariance)を導入し、オープンセット領域の一般化のための統一的なフレームワークを提案する。
FSIは機能領域内の異なるドメイン間のセマンティック一貫性を維持しており、見えないドメイン内のOODインスタンスをより正確に検出することができる。
さらに、新しいドメインスタイルやクラスラベルで合成データを生成するために生成モデルを採用し、モデルロバスト性を向上する。
最初の実験では、AUROCはColoredMNISTで9.1%から18.9%改善し、また分布内分類精度も著しく向上した。
関連論文リスト
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
斬新なクラスとドメインの両方が存在するようなオープンワールドシナリオでは、理想的なセグメンテーションモデルは安全のために異常なクラスを検出する必要がある。
既存の方法はドメインレベルとセマンティックレベルの分散シフトを区別するのに苦労することが多い。
論文 参考訳(メタデータ) (2024-11-06T11:03:02Z) - Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
オープンソースの単一ソースドメインの一般化は、単一のソースドメインを使用して、未知のターゲットドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
本稿では,領域拡大と境界成長に基づく新しい学習手法を提案する。
提案手法は,いくつかの領域横断画像分類データセットにおいて,大幅な改善と最先端性能を実現することができる。
論文 参考訳(メタデータ) (2024-11-05T09:08:46Z) - Randomized Adversarial Style Perturbations for Domain Generalization [49.888364462991234]
本稿では,RASP(Randomized Adversarial Style Perturbation)と呼ばれる新しい領域一般化手法を提案する。
提案アルゴリズムは, ランダムに選択されたクラスに対して, 対角方向の特徴のスタイルを乱し, 予期せぬ対象領域で観測される予期せぬスタイルに誤解されないよう, モデルを学習させる。
提案アルゴリズムは,様々なベンチマークによる広範な実験により評価され,特に大規模ベンチマークにおいて,領域一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2023-04-04T17:07:06Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
ドメインの一般化は、ドメイン固有の特徴を抑えながら、ドメイン不変の機能の学習を促進することを目的としている。
オブジェクト検出のためのドメイン一般化手法を提案し, オブジェクト検出アーキテクチャに適用可能な最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-10T11:14:18Z) - Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains [48.17225008334873]
我々は,COCOA (COntext Conditional Adaptive) Batch-Normalization と統合された特徴生成フレームワークを提案する。
生成されたビジュアル機能は、基礎となるデータ分散をよりよくキャプチャすることで、テスト時に見つからないクラスやドメインに一般化できます。
確立した大規模ベンチマークであるDomainNetに対する我々のアプローチを徹底的に評価し、分析する。
論文 参考訳(メタデータ) (2021-07-15T17:51:16Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
ドメイン一般化(DG)に基づく対スプーフィングアプローチは、予期せぬシナリオの堅牢性のために注目を集めています。
ドメインダイナミック調整メタラーニング(D2AM)についてドメインラベルを使わずに提案する。
この制限を克服するため,ドメインダイナミック調整メタラーニング(D2AM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T06:04:59Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
ドメインフリードメイン一般化(DFDG)は、目に見えないテストドメインでより良い一般化性能を実現するモデル非依存の方法である。
DFDGは新しい戦略を用いてドメイン不変なクラス差別的特徴を学習する。
時系列センサと画像分類公開データセットの両方で競合性能を得る。
論文 参考訳(メタデータ) (2021-02-17T17:46:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。