Spiking Transformer Hardware Accelerators in 3D Integration
- URL: http://arxiv.org/abs/2411.07397v1
- Date: Mon, 11 Nov 2024 22:08:11 GMT
- Title: Spiking Transformer Hardware Accelerators in 3D Integration
- Authors: Boxun Xu, Junyoung Hwang, Pruek Vanna-iampikul, Sung Kyu Lim, Peng Li,
- Abstract summary: Spiking neural networks (SNNs) are powerful models of computation and are well suited for on resource-constrained edge devices and neuromorphic hardware.
Recently emerged showcased spiking transformers have promising performance and efficiency by capitalizing on the binary nature of spiking operations.
- Score: 5.426379844893919
- License:
- Abstract: Spiking neural networks (SNNs) are powerful models of spatiotemporal computation and are well suited for deployment on resource-constrained edge devices and neuromorphic hardware due to their low power consumption. Leveraging attention mechanisms similar to those found in their artificial neural network counterparts, recently emerged spiking transformers have showcased promising performance and efficiency by capitalizing on the binary nature of spiking operations. Recognizing the current lack of dedicated hardware support for spiking transformers, this paper presents the first work on 3D spiking transformer hardware architecture and design methodology. We present an architecture and physical design co-optimization approach tailored specifically for spiking transformers. Through memory-on-logic and logic-on-logic stacking enabled by 3D integration, we demonstrate significant energy and delay improvements compared to conventional 2D CMOS integration.
Related papers
- Kolmogorov-Arnold Transformer [72.88137795439407]
We introduce the Kolmogorov-Arnold Transformer (KAT), a novel architecture that replaces layers with Kolmogorov-Arnold Network (KAN) layers.
We identify three key challenges: (C1) Base function, (C2) Inefficiency, and (C3) Weight.
With these designs, KAT outperforms traditional-based transformers.
arXiv Detail & Related papers (2024-09-16T17:54:51Z) - ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks [2.9699290794642366]
ARTEMIS is a mixed analog-stochastic in-DRAM accelerator for transformer models.
Our analysis indicates that ARTEMIS exhibits at least 3.0x speedup, 1.8x lower energy, and 1.9x better energy efficiency compared to GPU, TPU, CPU, and state-of-the-art PIM transformer hardware accelerators.
arXiv Detail & Related papers (2024-07-17T15:08:14Z) - Co-Designing Binarized Transformer and Hardware Accelerator for Efficient End-to-End Edge Deployment [3.391499691517567]
Transformer models have revolutionized AI tasks, but their large size hinders real-world deployment on resource-constrained and latency-critical edge devices.
We propose a co-design method for efficient end-to-end edge deployment of Transformers from three aspects: algorithm, hardware, and joint optimization.
Experimental results show our co-design achieves up to 2.14-49.37x throughput gains and 3.72-88.53x better energy efficiency over state-of-the-art Transformer accelerators.
arXiv Detail & Related papers (2024-07-16T12:36:10Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Hierarchical Point Attention for Indoor 3D Object Detection [111.04397308495618]
This work proposes two novel attention operations as generic hierarchical designs for point-based transformer detectors.
First, we propose Multi-Scale Attention (MS-A) that builds multi-scale tokens from a single-scale input feature to enable more fine-grained feature learning.
Second, we propose Size-Adaptive Local Attention (Local-A) with adaptive attention regions for localized feature aggregation within bounding box proposals.
arXiv Detail & Related papers (2023-01-06T18:52:12Z) - Cross-Attention of Disentangled Modalities for 3D Human Mesh Recovery
with Transformers [17.22112222736234]
Transformer encoder architectures have recently achieved state-of-the-art results on monocular 3D human mesh reconstruction.
Due to the large memory overhead and slow inference speed, it is difficult to deploy such models for practical use.
We propose a novel transformer encoder-decoder architecture for 3D human mesh reconstruction from a single image, called FastMETRO.
arXiv Detail & Related papers (2022-07-27T22:54:09Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Transformer Acceleration with Dynamic Sparse Attention [20.758709319088865]
We propose the Dynamic Sparse Attention (DSA) that can efficiently exploit the dynamic sparsity in the attention of Transformers.
Our approach can achieve better trade-offs between accuracy and model complexity.
arXiv Detail & Related papers (2021-10-21T17:31:57Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
We propose the concept of tightly-coupled convolutional Transformer(TCCT) and three TCCT architectures.
Our experiments on real-world datasets show that our TCCT architectures could greatly improve the performance of existing state-of-art Transformer models.
arXiv Detail & Related papers (2021-08-29T08:49:31Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.