論文の概要: Untangling Hate Speech Definitions: A Semantic Componential Analysis Across Cultures and Domains
- arxiv url: http://arxiv.org/abs/2411.07417v1
- Date: Mon, 11 Nov 2024 22:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:20.258274
- Title: Untangling Hate Speech Definitions: A Semantic Componential Analysis Across Cultures and Domains
- Title(参考訳): あいまいなヘイトスピーチ定義:文化とドメイン間の意味的成分分析
- Authors: Katerina Korre, Arianna Muti, Federico Ruggeri, Alberto Barrón-Cedeño,
- Abstract要約: オンライン辞書、研究論文、ウィキペディアの記事、法律、オンラインプラットフォームという5つのドメインから派生した定義のデータセットを作成します。
我々の分析では、コンポーネントは定義から定義まで異なるが、多くのドメインは対象の文化を考慮せずに互いに定義を借用している。
- 参考スコア(独自算出の注目度): 12.964629786324032
- License:
- Abstract: Hate speech relies heavily on cultural influences, leading to varying individual interpretations. For that reason, we propose a Semantic Componential Analysis (SCA) framework for a cross-cultural and cross-domain analysis of hate speech definitions. We create the first dataset of definitions derived from five domains: online dictionaries, research papers, Wikipedia articles, legislation, and online platforms, which are later analyzed into semantic components. Our analysis reveals that the components differ from definition to definition, yet many domains borrow definitions from one another without taking into account the target culture. We conduct zero-shot model experiments using our proposed dataset, employing three popular open-sourced LLMs to understand the impact of different definitions on hate speech detection. Our findings indicate that LLMs are sensitive to definitions: responses for hate speech detection change according to the complexity of definitions used in the prompt.
- Abstract(参考訳): ヘイトスピーチは文化的な影響に大きく依存しており、個々の解釈が異なる。
そこで我々は,ヘイトスピーチ定義のクロスカルチャーおよびクロスドメイン分析のためのセマンティックコンポーネント分析(SCA)フレームワークを提案する。
オンライン辞書、研究論文、ウィキペディアの記事、法律、オンラインプラットフォームという5つのドメインから派生した最初の定義データセットを作成し、後にセマンティックコンポーネントに分析する。
我々の分析によると、コンポーネントは定義から定義まで異なるが、多くのドメインは対象の文化を考慮せずに互いに定義を借用している。
提案したデータセットを用いてゼロショットモデル実験を行い、3つの人気のあるオープンソースLLMを用いて、ヘイトスピーチ検出に対する異なる定義の影響を理解する。
以上の結果から,LLMは定義に敏感であることが示唆された: ヘイトスピーチ検出に対する応答は,プロンプトで使用される定義の複雑さに応じて変化する。
関連論文リスト
- Definition generation for lexical semantic change detection [3.7297237438000788]
ダイアクロニック辞書意味変化検出(LSCD)タスクにおける意味表現として,大言語モデルによって生成された文脈化された単語定義を用いる。
つまり、生成された定義を感覚として使用し、比較対象単語の変化スコアを、比較対象単語の分布を2つの期間に比較して検索する。
本手法は従来の非教師付きLSCD法と同等か優れる。
論文 参考訳(メタデータ) (2024-06-20T10:13:08Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
文意味構造の解析において, GPT-3, ChatGPT, および GPT-4 モデルの成功と限界について検討した。
モデルはAMRの基本形式を確実に再現でき、しばしばコアイベント、引数、修飾子構造をキャプチャできる。
全体としては,これらのモデルではセマンティック構造の側面を捉えることができるが,完全に正確なセマンティック解析や解析をサポートする能力には重要な制限が残されている。
論文 参考訳(メタデータ) (2023-10-26T21:47:59Z) - Towards Legally Enforceable Hate Speech Detection for Public Forums [29.225955299645978]
本研究では,ヘイトスピーチ検出のための新たな視点と課題を紹介する。
法の専門家による11の可能な定義に違反したデータセットを使用します。
ヘイトスピーチの明確で法的に強制可能なインスタンスを特定することの難しさを踏まえ、専門家が作成したサンプルと自動マイニングされたチャレンジセットでデータセットを拡張する。
論文 参考訳(メタデータ) (2023-05-23T04:34:41Z) - A Category-theoretical Meta-analysis of Definitions of Disentanglement [97.34033555407403]
データの変化の要因を識別することは、機械学習の基本的な概念である。
本稿では,既存の乱れの定義をメタ分析する。
論文 参考訳(メタデータ) (2023-05-11T15:24:20Z) - Neighboring Words Affect Human Interpretation of Saliency Explanations [65.29015910991261]
単語レベルのサリエンシの説明は、しばしばテキストベースのモデルで特徴属性を伝えるために使われる。
近年の研究では、単語の長さなどの表面的要因が、コミュニケーションされたサリエンシスコアの人間の解釈を歪めてしまうことが報告されている。
本研究では,単語の近傍にある単語のマーキングが,その単語の重要性に対する説明者の認識にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2023-05-04T09:50:25Z) - Are Representations Built from the Ground Up? An Empirical Examination
of Local Composition in Language Models [91.3755431537592]
構成的・非構成的句を表現することは言語理解にとって重要である。
まず,より長いフレーズのLM-内部表現を,その構成成分から予測する問題を定式化する。
意味的構成性の人間の判断と相関する予測精度を期待するが、大部分はそうではない。
論文 参考訳(メタデータ) (2022-10-07T14:21:30Z) - Hate Speech Criteria: A Modular Approach to Task-Specific Hate Speech
Definitions [1.3274508420845537]
本稿では,法と社会科学の観点から展開したテキスト音声基準について述べる。
我々は、開発者が念頭に置いている目標と正確なタスクは、テキスト音声のスコープをどのように定義するかを決定するべきであると論じる。
論文 参考訳(メタデータ) (2022-06-30T17:50:16Z) - Highly Generalizable Models for Multilingual Hate Speech Detection [0.0]
ヘイトスピーチ検出は過去10年で重要な研究課題となっている。
我々は11言語からなるデータセットをコンパイルし、組み合わせたデータとバイナリラベル(ヘイトスピーチかヘイトスピーチでないか)を解析することで、異なる解決を行う。
多言語-トレイン型モノリンガルテスト,モノリンガルトレイン型モノリンガルテスト,言語-家族型モノリンガルテストのシナリオである。
論文 参考訳(メタデータ) (2022-01-27T03:09:38Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
この研究は、暗黙のヘイトスピーチの理論的に正当化された分類法と、各メッセージにきめ細かいラベルを付けたベンチマークコーパスを導入している。
本稿では、同時代のベースラインを用いて、暗黙のヘイトスピーチを検出し、説明するためにデータセットを体系的に分析する。
論文 参考訳(メタデータ) (2021-09-11T16:52:56Z) - Words aren't enough, their order matters: On the Robustness of Grounding
Visual Referring Expressions [87.33156149634392]
視覚的参照表現認識のための標準ベンチマークであるRefCOgを批判的に検討する。
83.7%のケースでは言語構造に関する推論は不要である。
比較学習とマルチタスク学習の2つの手法を提案し,ViLBERTのロバスト性を高める。
論文 参考訳(メタデータ) (2020-05-04T17:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。