Rapid Response: Mitigating LLM Jailbreaks with a Few Examples
- URL: http://arxiv.org/abs/2411.07494v1
- Date: Tue, 12 Nov 2024 02:44:49 GMT
- Title: Rapid Response: Mitigating LLM Jailbreaks with a Few Examples
- Authors: Alwin Peng, Julian Michael, Henry Sleight, Ethan Perez, Mrinank Sharma,
- Abstract summary: We develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks.
We evaluate five rapid response methods, all of which use jailbreak proliferation.
Our strongest method reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set.
- Score: 13.841146655178585
- License:
- Abstract: As large language models (LLMs) grow more powerful, ensuring their safety against misuse becomes crucial. While researchers have focused on developing robust defenses, no method has yet achieved complete invulnerability to attacks. We propose an alternative approach: instead of seeking perfect adversarial robustness, we develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks. To study this setting, we develop RapidResponseBench, a benchmark that measures a defense's robustness against various jailbreak strategies after adapting to a few observed examples. We evaluate five rapid response methods, all of which use jailbreak proliferation, where we automatically generate additional jailbreaks similar to the examples observed. Our strongest method, which fine-tunes an input classifier to block proliferated jailbreaks, reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set, having observed just one example of each jailbreaking strategy. Moreover, further studies suggest that the quality of proliferation model and number of proliferated examples play an key role in the effectiveness of this defense. Overall, our results highlight the potential of responding rapidly to novel jailbreaks to limit LLM misuse.
Related papers
- JailbreakLens: Interpreting Jailbreak Mechanism in the Lens of Representation and Circuit [21.380057443286034]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Jailbreak attacks are prevalent, but the understanding of their underlying mechanisms remains limited.
arXiv Detail & Related papers (2024-11-17T16:08:34Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
We propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF)
HSF enables the model to preemptively identify and reject adversarial inputs before the inference process begins.
It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries.
arXiv Detail & Related papers (2024-08-31T06:50:07Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against Large Language Models (LLMs)
It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator.
Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks.
arXiv Detail & Related papers (2024-03-18T18:39:53Z) - A StrongREJECT for Empty Jailbreaks [72.8807309802266]
StrongREJECT is a high-quality benchmark for evaluating jailbreak performance.
It scores the harmfulness of a victim model's responses to forbidden prompts.
It achieves state-of-the-art agreement with human judgments of jailbreak effectiveness.
arXiv Detail & Related papers (2024-02-15T18:58:09Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
We study 13 cutting-edge jailbreak methods from four categories, 160 questions from 16 violation categories, and six popular LLMs.
Our experimental results demonstrate that the optimized jailbreak prompts consistently achieve the highest attack success rates.
We discuss the trade-off between the attack performance and efficiency, as well as show that the transferability of the jailbreak prompts is still viable.
arXiv Detail & Related papers (2024-02-08T13:42:50Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.