論文の概要: Depthwise Separable Convolutions with Deep Residual Convolutions
- arxiv url: http://arxiv.org/abs/2411.07544v1
- Date: Tue, 12 Nov 2024 04:47:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:21:24.691729
- Title: Depthwise Separable Convolutions with Deep Residual Convolutions
- Title(参考訳): 深い残差畳み込みを伴う奥行き分離可能な畳み込み
- Authors: Md Arid Hasan, Krishno Dey,
- Abstract要約: Xceptionはコンピュータビジョンアプリケーションのための最も人気のあるディープラーニングアルゴリズムの1つである。
Xceptionの計算複雑性は、リソース制約のあるエッジデバイスへのデプロイメントを妨げることがある。
エッジデバイスのための小型で効率的なモデルを開発するために,Xceptionアーキテクチャの奥深い残差畳み込みを伴う奥行き分離可能な畳み込みを組み込んだ。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The recent advancement of edge computing enables researchers to optimize various deep learning architectures to employ them in edge devices. In this study, we aim to optimize Xception architecture which is one of the most popular deep learning algorithms for computer vision applications. The Xception architecture is highly effective for object detection tasks. However, it comes with a significant computational cost. The computational complexity of Xception sometimes hinders its deployment on resource-constrained edge devices. To address this, we propose an optimized Xception architecture tailored for edge devices, aiming for lightweight and efficient deployment. We incorporate the depthwise separable convolutions with deep residual convolutions of the Xception architecture to develop a small and efficient model for edge devices. The resultant architecture reduces parameters, memory usage, and computational load. The proposed architecture is evaluated on the CIFAR 10 object detection dataset. The evaluation result of our experiment also shows the proposed architecture is smaller in parameter size and requires less training time while outperforming Xception architecture performance.
- Abstract(参考訳): エッジコンピューティングの最近の進歩により、さまざまなディープラーニングアーキテクチャを最適化してエッジデバイスに採用することが可能になった。
本研究では,コンピュータビジョンアプリケーションにおいて最も人気のあるディープラーニングアルゴリズムの一つであるXceptionアーキテクチャを最適化することを目的とする。
Xceptionアーキテクチャは、オブジェクト検出タスクに非常に効果的である。
しかし、計算コストはかなり高い。
Xceptionの計算複雑性は、リソース制約のあるエッジデバイスへのデプロイメントを妨げることがある。
そこで本稿では,エッジデバイスに適した最適化されたXceptionアーキテクチャを提案する。
エッジデバイスのための小型で効率的なモデルを開発するために,Xceptionアーキテクチャの奥深い残差畳み込みを伴う奥行き分離可能な畳み込みを組み込んだ。
結果、アーキテクチャはパラメータ、メモリ使用量、計算負荷を減らす。
提案アーキテクチャは,CIFAR 10オブジェクト検出データセットを用いて評価される。
また,本実験の結果から,提案したアーキテクチャはパラメータサイズが小さく,Xceptionアーキテクチャ性能に優れる一方で,トレーニング時間を短縮できることがわかった。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Integrated Hardware Architecture and Device Placement Search [7.620610652090732]
ディープラーニングトレーニングの分散実行には、ハードウェアアクセラレータアーキテクチャとデバイス配置戦略との動的相互作用が含まれる。
これは、最適なアーキテクチャとデバイス配置戦略を決定するための協調最適化を探求する最初の試みである。
提案手法は,最先端のTPUv4とSpotlightアクセラレーター検索フレームワークと比較して,大規模言語モデルにおいて高いスループットを実現する。
論文 参考訳(メタデータ) (2024-07-18T04:02:35Z) - Growing Tiny Networks: Spotting Expressivity Bottlenecks and Fixing Them Optimally [2.645067871482715]
機械学習タスクでは、ある機能空間内で最適な関数を探索する。
この方法で、トレーニング中の機能の進化を、選択したアーキテクチャで表現可能な領域内に配置させます。
表現力のボトルネックによる望ましいアーキテクチャ変更に関する情報は, 後処理の % から抽出可能であることを示す。
論文 参考訳(メタデータ) (2024-05-30T08:23:56Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
本研究では,フロー推定タスクにおいて,より優れたエンコーダアーキテクチャを自動で見つけるために,FlowNASというニューラルアーキテクチャ探索手法を提案する。
実験の結果、スーパーネットワークから受け継いだ重み付きアーキテクチャは、KITTI上で4.67%のF1-allエラーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T09:05:25Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
本稿では,タスク性能と「イントロスペクタビリティ」の両方を最適化するフレームワークを提案する。
タスクエラーとイントロスペクタビリティを共同で最適化することは、エラー内で実行されるより不整合でデバッグ可能なアーキテクチャをもたらすことを実証する。
論文 参考訳(メタデータ) (2021-12-16T05:50:55Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
微分可能なニューラルアーキテクチャ探索は、その探索効率と簡易性において最も人気のあるNAS手法の1つである。
本稿では,各操作がスーパーネットに与える影響を直接測定する摂動に基づくアーキテクチャ選択を提案する。
提案手法により,DARTSの故障モードを大幅に緩和できることがわかった。
論文 参考訳(メタデータ) (2021-08-10T00:53:39Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
微分可能なArchiTecture Search(DARTS)は先日,ニューラルアーキテクチャサーチ(NAS)の主流になった。
暗黙の関数定理に基づいてDARTSの過次計算に取り組む。
提案手法であるiDARTSのアーキテクチャ最適化は,定常点に収束することが期待される。
論文 参考訳(メタデータ) (2021-06-21T00:44:11Z) - Multi-Objective Neural Architecture Search Based on Diverse Structures
and Adaptive Recommendation [4.595675084986132]
畳み込みニューラルネットワーク(CNN)のためのニューラルネットワーク探索(NAS)の検索空間は巨大である。
本稿では,既存の研究結果と過去の情報を利用して,軽量かつ高精度なアーキテクチャを迅速に発見するMoARRアルゴリズムを提案する。
実験結果から,CIFAR-10上でのMoARRは6GPU時間で1.9%の誤差率と2.3Mパラメータを持つ,強力で軽量なモデルを実現することができた。
論文 参考訳(メタデータ) (2020-07-06T13:42:33Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。