Disentangling Tabular Data Towards Better One-Class Anomaly Detection
- URL: http://arxiv.org/abs/2411.07574v2
- Date: Tue, 17 Dec 2024 07:51:13 GMT
- Title: Disentangling Tabular Data Towards Better One-Class Anomaly Detection
- Authors: Jianan Ye, Zhaorui Tan, Yijie Hu, Xi Yang, Guangliang Cheng, Kaizhu Huang,
- Abstract summary: Tabular anomaly detection under the one-class classification setting poses a significant challenge.<n>Capturing the intrinsic correlation among attributes within normal samples presents one promising method for learning the concept.<n>Our method substantially outperforms the state-of-the-art methods and leads to an average performance improvement of 6.1% on AUC-PR and 2.1% on AUC-ROC.
- Score: 24.549797910707092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tabular anomaly detection under the one-class classification setting poses a significant challenge, as it involves accurately conceptualizing "normal" derived exclusively from a single category to discern anomalies from normal data variations. Capturing the intrinsic correlation among attributes within normal samples presents one promising method for learning the concept. To do so, the most recent effort relies on a learnable mask strategy with a reconstruction task. However, this wisdom may suffer from the risk of producing uniform masks, i.e., essentially nothing is masked, leading to less effective correlation learning. To address this issue, we presume that attributes related to others in normal samples can be divided into two non-overlapping and correlated subsets, defined as CorrSets, to capture the intrinsic correlation effectively. Accordingly, we introduce an innovative method that disentangles CorrSets from normal tabular data. To our knowledge, this is a pioneering effort to apply the concept of disentanglement for one-class anomaly detection on tabular data. Extensive experiments on 20 tabular datasets show that our method substantially outperforms the state-of-the-art methods and leads to an average performance improvement of 6.1% on AUC-PR and 2.1% on AUC-ROC. Codes are available at https://github.com/yjnanan/Disent-AD.
Related papers
- RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data [19.25420308920505]
Methods based on normality assumptions face three limitations.
Their basic assumption is that the training data is uncontaminated (free of anomalies)
This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges.
arXiv Detail & Related papers (2025-03-24T06:52:28Z) - Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end.
Our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
arXiv Detail & Related papers (2024-11-14T16:10:15Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - FACTS: First Amplify Correlations and Then Slice to Discover Bias [17.244153084361102]
Computer vision datasets frequently contain spurious correlations between task-relevant labels and (easy to learn) latent task-irrelevant attributes.
Models trained on such datasets learn "shortcuts" and underperform on bias-conflicting slices of data where the correlation does not hold.
We propose First Amplify Correlations and Then Slice to Discover Bias to inform downstream bias mitigation strategies.
arXiv Detail & Related papers (2023-09-29T17:41:26Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
We tackle two essential problems of active learning for Deep SVDD: query strategy and semi-supervised learning method.
First, rather than solely identifying anomalies, our query strategy selects uncertain samples according to an adaptive boundary.
Second, we apply noise contrastive estimation in training a one-class classification model to incorporate both labeled normal and abnormal data effectively.
arXiv Detail & Related papers (2023-09-18T03:56:45Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
Most deep anomaly detection models are based on learning normality from datasets.
In practice, the normality assumption is often violated due to the nature of real data distributions.
We propose a learning framework to reduce this gap and achieve better normality representation.
arXiv Detail & Related papers (2023-09-18T02:36:19Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Beyond Individual Input for Deep Anomaly Detection on Tabular Data [0.0]
Anomaly detection is vital in many domains, such as finance, healthcare, and cybersecurity.
To the best of our knowledge, this is the first work to successfully combine feature-feature and sample-sample dependencies.
Our method achieves state-of-the-art performance, outperforming existing methods by 2.4% and 1.2% in terms of F1-score and AUROC, respectively.
arXiv Detail & Related papers (2023-05-24T13:13:26Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.