Enhancing Ultra High Resolution Remote Sensing Imagery Analysis with ImageRAG
- URL: http://arxiv.org/abs/2411.07688v1
- Date: Tue, 12 Nov 2024 10:12:12 GMT
- Title: Enhancing Ultra High Resolution Remote Sensing Imagery Analysis with ImageRAG
- Authors: Zilun Zhang, Haozhan Shen, Tiancheng Zhao, Yuhao Wang, Bin Chen, Yuxiang Cai, Yongheng Shang, Jianwei Yin,
- Abstract summary: ImageRAG for RS is a training-free framework to address the complexities of analyzing UHR remote sensing imagery.
ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts.
- Score: 24.342190878813234
- License:
- Abstract: Ultra High Resolution (UHR) remote sensing imagery (RSI) (e.g. 100,000 $\times$ 100,000 pixels or more) poses a significant challenge for current Remote Sensing Multimodal Large Language Models (RSMLLMs). If choose to resize the UHR image to standard input image size, the extensive spatial and contextual information that UHR images contain will be neglected. Otherwise, the original size of these images often exceeds the token limits of standard RSMLLMs, making it difficult to process the entire image and capture long-range dependencies to answer the query based on the abundant visual context. In this paper, we introduce ImageRAG for RS, a training-free framework to address the complexities of analyzing UHR remote sensing imagery. By transforming UHR remote sensing image analysis task to image's long context selection task, we design an innovative image contextual retrieval mechanism based on the Retrieval-Augmented Generation (RAG) technique, denoted as ImageRAG. ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts that pertain to a given query. Fast path and slow path are proposed in this framework to handle this task efficiently and effectively. ImageRAG allows RSMLLMs to manage extensive context and spatial information from UHR RSI, ensuring the analysis is both accurate and efficient.
Related papers
- RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
We propose the Remote Sensing Mamba (RSM) for dense prediction tasks in large VHR remote sensing images.
RSM is specifically designed to capture the global context of remote sensing images with linear complexity.
Our model achieves better efficiency and accuracy than transformer-based models on large remote sensing images.
arXiv Detail & Related papers (2024-04-03T12:06:01Z) - RSVG: Exploring Data and Models for Visual Grounding on Remote Sensing
Data [14.742224345061487]
We introduce the task of visual grounding for remote sensing data (RSVG)
RSVG aims to localize the referred objects in remote sensing (RS) images with the guidance of natural language.
In this work, we construct a large-scale benchmark dataset of RSVG and explore deep learning models for the RSVG task.
arXiv Detail & Related papers (2022-10-23T07:08:22Z) - Geometry-Aware Reference Synthesis for Multi-View Image Super-Resolution [16.68091352547819]
Multi-View Image Super-Resolution (MVISR) task aims to increase the resolution of multi-view images captured from the same scene.
One solution is to apply image or video super-resolution (SR) methods to reconstruct HR results from the low-resolution (LR) input view.
We propose the MVSRnet, which uses geometry information to extract sharp details from all LR multi-view to support the SR of the LR input view.
arXiv Detail & Related papers (2022-07-18T13:46:47Z) - Rethinking Super-Resolution as Text-Guided Details Generation [21.695227836312835]
We propose a Text-Guided Super-Resolution (TGSR) framework, which can effectively utilize the information from the text and image modalities.
The proposed TGSR could generate HR image details that match the text descriptions through a coarse-to-fine process.
arXiv Detail & Related papers (2022-07-14T01:46:38Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews,
Guidances and Million-AID [57.71601467271486]
This article discusses the problem of how to efficiently prepare a suitable benchmark dataset for RS image interpretation.
We first analyze the current challenges of developing intelligent algorithms for RS image interpretation with bibliometric investigations.
Following the presented guidances, we also provide an example on building RS image dataset, i.e., Million-AID, a new large-scale benchmark dataset.
arXiv Detail & Related papers (2020-06-22T17:59:00Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.