Collective multimode strong coupling in plasmonic nanocavities
- URL: http://arxiv.org/abs/2411.07694v1
- Date: Tue, 12 Nov 2024 10:18:04 GMT
- Title: Collective multimode strong coupling in plasmonic nanocavities
- Authors: Angus Crookes, Ben Yuen, Angela Demetriadou,
- Abstract summary: We show that off-resonant plasmonic modes play a crucial role in strong coupling, and determine the onset of a novel collective interaction.
Our findings enhance the understanding of quantum dynamics in realistic plasmonic environments and demonstrate their potential to achieve ultra-fast energy transfer in light-driven quantum technologies.
- Score: 0.0
- License:
- Abstract: Plasmonic nanocavities enable access to the quantum properties of matter, but are often simplified to single mode models despite their complex multimode structure. Here, we show that off-resonant plasmonic modes in fact play a crucial role in strong coupling, and determine the onset of a novel collective interaction. Our analysis reveals that $n$ strongly coupled plasmonic modes, introduce up to $n(n+1)/2$ oscillation frequencies that depend on their coupling strengths and detunings from the quantum emitter. Furthermore, we identify three distinct regions as the coupling strength increases: (1) single mode, (2) multimode, and (3) collective multimode strong coupling. Our findings enhance the understanding of quantum dynamics in realistic plasmonic environments and demonstrate their potential to achieve ultra-fast energy transfer in light-driven quantum technologies.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Exact solution for the collective non-Markovian decay of two fully excited quantum emitters [0.0]
We analyze a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional waveguide.
Our methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems.
arXiv Detail & Related papers (2024-03-20T14:54:45Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Mode-multiplexing deep-strong light-matter coupling [0.0]
We show a new regime of record-strong light-matter interaction which exploits the cooperative dipole moments of multiple, highly non-resonant magnetoplasmon modes.
The extreme interaction drives strongly subcycle exchange of vacuum energy between multiple bosonic modes.
This offers avenues towards tailoring phase transitions by coupling otherwise non-interacting modes.
arXiv Detail & Related papers (2023-09-13T12:27:35Z) - Polaromechanics: photons, magnons and phonons in the triple strong-coupling regime [6.338229222004337]
We show the realization of triple strong coupling in a novel polaromechanical hybrid system.
A high polaromechanical cooperativity of $9.4times103$ is achieved by significantly reducing the polariton decay rate.
Our results pave the way towards coherent quantum control of photons, magnons and phonons, and are a crucial step for building functional hybrid quantum systems based on magnons.
arXiv Detail & Related papers (2023-07-21T03:30:44Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems: insights on the second excitation manifold [0.0]
This work contrasts predictions from the Tavis-Cummings (TC) model, in which the material is a collection of two-level systems.
We simplify the brute-force diagonalization of a gigantic $N2times N2$ Hamiltonian.
We find resonant conditions between bipolaritons and anharmonic transitions where two-photon absorption can be enhanced.
arXiv Detail & Related papers (2022-02-03T06:33:42Z) - Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling
Strengths [0.0]
Quantum light-matter systems at strong coupling are notoriously challenging to analyze.
We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths.
arXiv Detail & Related papers (2020-10-07T18:00:10Z) - Energy transfer in $N$-component nanosystems enhanced by pulse-driven
vibronic many-body entanglement [41.94295877935867]
We show that pulses of intermediate duration generate highly entangled vibronic states that spread multiple excitons -- and hence energy -- maximally within the system.
The underlying pulse-generated vibronic entanglement increases in strength and robustness as $N$ increases.
arXiv Detail & Related papers (2017-08-10T17:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.