Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling
Strengths
- URL: http://arxiv.org/abs/2010.03583v3
- Date: Thu, 18 Mar 2021 00:44:24 GMT
- Title: Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling
Strengths
- Authors: Yuto Ashida, Atac Imamoglu, Eugene Demler
- Abstract summary: Quantum light-matter systems at strong coupling are notoriously challenging to analyze.
We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum light-matter systems at strong coupling are notoriously challenging
to analyze due to the need to include states with many excitations in every
coupled mode. We propose a nonperturbative approach to analyze light-matter
correlations at all interaction strengths. The key element of our approach is a
unitary transformation that achieves asymptotic decoupling of light and matter
degrees of freedom in the limit where light-matter interaction becomes the
dominant energy scale. In the transformed frame, truncation of the
matter/photon Hilbert space is increasingly well-justified at larger coupling,
enabling one to systematically derive low-energy effective models, such as
tight-binding Hamiltonians. We demonstrate the versatility of our approach by
applying it to concrete models relevant to electrons in crystal potential and
electric dipoles interacting with a cavity mode. A generalization to the case
of spatially varying electromagnetic modes is also discussed.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Many Electrons and the Photon Field -- The many-body structure of
nonrelativistic quantum electrodynamics [0.0]
We show how to turn electronic-structure methods into polaritonic-structure methods that are accurate from the weak to the strong-coupling regime.
We discuss how to adopt standard algorithms of electronic-structure methods to adhere to the new hybrid Fermi-Bose statistics.
arXiv Detail & Related papers (2021-02-23T11:00:06Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric
Phase Transition [0.0]
We study a dipolar quantum many-body system embedded in a cavity composed of metal mirrors.
We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors.
Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping.
arXiv Detail & Related papers (2020-03-30T18:00:01Z) - Weak-to-Strong Light-Matter Coupling and Dissipative Dynamics from First
Principles [0.0]
We generalize ab initio quantum-electrodynamical density functional theory to account for dissipative dynamics.
We study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling.
arXiv Detail & Related papers (2020-02-24T19:00:00Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.