Constraint Learning for Parametric Point Cloud
- URL: http://arxiv.org/abs/2411.07747v3
- Date: Wed, 20 Nov 2024 13:56:33 GMT
- Title: Constraint Learning for Parametric Point Cloud
- Authors: Xi Cheng, Ruiqi Lei, Di Huang, Zhichao Liao, Fengyuan Piao, Yan Chen, Pingfa Feng, Long Zeng,
- Abstract summary: Parametric point clouds are sampled from CAD shapes, and have become increasingly prevalent in industrial manufacturing.
To address this issue, we analyzed the effect of constraints, and proposed its deep learning-friendly representation.
CstNet is the first constraint-based learning method tailored for CAD shape analysis.
- Score: 19.190053031718417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric point clouds are sampled from CAD shapes, and have become increasingly prevalent in industrial manufacturing. However, most existing point cloud learning methods focus on the geometric features, such as developing efficient convolution operations, overlooking the important attribute of constraints inherent in CAD shapes, which limits these methods' ability to comprehend CAD shapes fully. To address this issue, we analyzed the effect of constraints, and proposed its deep learning-friendly representation, after that, the Constraint Feature Learning Network (CstNet) was developed to extract and leverage constraints. Our CstNet includes two stages. Stage 1 extracts constraints from B-Rep data or point cloud. Stage 2 leverages coordinates and constraints to enhance the comprehension of CAD shapes. Additionally, we built up the Parametric 20,000 Multi-modal Dataset for the scarcity of labeled B-Rep datasets. Experiments demonstrate that our CstNet achieved state-of-the-art performance on both public and proposed CAD shape datasets. To the best of our knowledge, CstNet is the first constraint-based learning method tailored for CAD shape analysis.
Related papers
- Boosting the Class-Incremental Learning in 3D Point Clouds via Zero-Collection-Cost Basic Shape Pre-Training [12.652126803856065]
Existing class-incremental learning methods in 3D point clouds rely on exemplars to resist forgetting of models.
For exemplar-free incremental learning, the pre-trained model methods have achieved state-of-the-art results in 2D domains.
This paper proposes a framework embedded with 3D geometry knowledge for incremental learning in point clouds.
arXiv Detail & Related papers (2025-04-11T10:18:35Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds [26.10631058349939]
We propose a hybrid analytic-neural reconstruction scheme that bridges the gap between segmented point clouds and structured CAD models.
We also propose a novel implicit neural representation of freeform surfaces, driving up the performance of our overall CAD reconstruction scheme.
arXiv Detail & Related papers (2023-12-07T08:23:44Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - FreePoint: Unsupervised Point Cloud Instance Segmentation [72.64540130803687]
We propose FreePoint, for underexplored unsupervised class-agnostic instance segmentation on point clouds.
We represent point features by combining coordinates, colors, and self-supervised deep features.
Based on the point features, we segment point clouds into coarse instance masks as pseudo labels, which are used to train a point cloud instance segmentation model.
arXiv Detail & Related papers (2023-05-11T16:56:26Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Reconstructing editable prismatic CAD from rounded voxel models [16.03976415868563]
We introduce a novel neural network architecture to solve this challenging task.
Our method reconstructs the input geometry in the voxel space by decomposing the shape.
During inference, we obtain the CAD data by first searching a database of 2D constrained sketches.
arXiv Detail & Related papers (2022-09-02T16:44:10Z) - Point2Cyl: Reverse Engineering 3D Objects from Point Clouds to Extrusion
Cylinders [25.389088434370066]
We propose Point2Cyl, a supervised network transforming a raw 3D point cloud to a set of extrusion cylinders.
Our approach demonstrates the best performance on two recent CAD datasets.
arXiv Detail & Related papers (2021-12-17T05:22:28Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
We develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN)
We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges.
This decoupled architecture together with a multi-scale grid feature learning is able to generate more realistic on-surface details.
arXiv Detail & Related papers (2021-08-23T05:10:29Z) - OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud
Registration [31.108056345511976]
OMNet is a global feature based iterative network for partial-to-partial point cloud registration.
We learn masks in a coarse-to-fine manner to reject non-overlapping regions, which converting the partial-to-partial registration to the registration of the same shapes.
arXiv Detail & Related papers (2021-03-01T11:59:59Z) - Adversarial Shape Learning for Building Extraction in VHR Remote Sensing
Images [18.650642666164252]
We propose an adversarial shape learning network (ASLNet) to model the building shape patterns.
Experiments show that the proposed ASLNet improves both the pixel-based accuracy and the object-based measurements by a large margin.
arXiv Detail & Related papers (2021-02-22T18:49:43Z) - Unsupervised Point Cloud Pre-Training via Occlusion Completion [18.42664414305454]
We describe a simple pre-training approach for point clouds.
It works in three steps: Mask all points occluded in a camera view; 2. Learn an encoder-decoder model to reconstruct the occluded points; 3. Use the encoder weights as initialisation for downstream point cloud tasks.
arXiv Detail & Related papers (2020-10-02T16:43:14Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
We propose a novel framework for monocular 3D objects detection using only RGB images, called KM3D-Net.
We design a fully convolutional model to predict object keypoints, dimension, and orientation, and then combine these estimations with perspective geometry constraints to compute position attribute.
arXiv Detail & Related papers (2020-09-02T00:51:51Z) - Point Cloud Completion by Learning Shape Priors [74.80746431691938]
shape priors include geometric information in both complete and partial point clouds.
We design a feature alignment strategy to learn the shape prior from complete points, and a coarse to fine strategy to incorporate partial prior in the fine stage.
We achieve state-of-the-art performances on the point cloud completion task.
arXiv Detail & Related papers (2020-08-02T04:00:32Z) - PIE-NET: Parametric Inference of Point Cloud Edges [40.27043782820615]
We introduce an end-to-end learnable technique to robustly identify feature edges in 3D point cloud data.
Our deep neural network, coined PIE-NET, is trained for parametric inference of edges.
arXiv Detail & Related papers (2020-07-09T15:35:10Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
Point cloud is a principal data structure adopted for 3D geometric information encoding.
Shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point.
arXiv Detail & Related papers (2020-04-20T16:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.