論文の概要: Large-scale Remote Sensing Image Target Recognition and Automatic Annotation
- arxiv url: http://arxiv.org/abs/2411.07802v1
- Date: Tue, 12 Nov 2024 13:57:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:21:12.691936
- Title: Large-scale Remote Sensing Image Target Recognition and Automatic Annotation
- Title(参考訳): 大規模リモートセンシング画像認識と自動アノテーション
- Authors: Wuzheng Dong,
- Abstract要約: LRSAAと呼ばれる大面積リモートセンシング画像におけるオブジェクト認識と自動ラベリングの手法を提案する。
YOLOv11とMobileNetV3-SSDオブジェクト検出アルゴリズムをアンサンブル学習により統合し,モデル性能を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a method for object recognition and automatic labeling in large-area remote sensing images called LRSAA. The method integrates YOLOv11 and MobileNetV3-SSD object detection algorithms through ensemble learning to enhance model performance. Furthermore, it employs Poisson disk sampling segmentation techniques and the EIOU metric to optimize the training and inference processes of segmented images, followed by the integration of results. This approach not only reduces the demand for computational resources but also achieves a good balance between accuracy and speed. The source code for this project has been made publicly available on https://github.com/anaerovane/LRSAA.
- Abstract(参考訳): LRSAAと呼ばれる大面積リモートセンシング画像におけるオブジェクト認識と自動ラベリングの手法を提案する。
YOLOv11とMobileNetV3-SSDオブジェクト検出アルゴリズムをアンサンブル学習により統合し,モデル性能を向上させる。
さらに、Poissonディスクサンプリングセグメンテーション技術とEIOUメトリックを使用して、セグメンテーションされた画像のトレーニングと推論プロセスを最適化し、結果の統合を行う。
このアプローチは計算資源の需要を減らすだけでなく、精度と速度のバランスも良い。
このプロジェクトのソースコードはhttps://github.com/anaerovane/LRSAAで公開されている。
関連論文リスト
- LRSAA: Large-scale Remote Sensing Image Target Recognition and Automatic Annotation [0.0]
LRSAAと呼ばれる大面積リモートセンシング画像におけるオブジェクト認識と自動ラベリングの手法を提案する。
YOLOv11とMobileNetV3-SSDオブジェクト検出アルゴリズムをアンサンブル学習により統合し,モデル性能を向上させる。
論文 参考訳(メタデータ) (2024-11-24T12:30:12Z) - ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
小さなオブジェクトは通常、わずかに分散され、局所的にクラスタ化される。
画像の非対象背景領域において、大量の特徴抽出計算を無駄にする。
本稿では,検出器のバックボーンを再利用して,特徴レベルのオブジェクト探索とパッチスライシングを行う方法を提案する。
論文 参考訳(メタデータ) (2024-07-23T12:21:23Z) - LiSD: An Efficient Multi-Task Learning Framework for LiDAR Segmentation and Detection [6.813145466843275]
LiSDはボクセルベースのエンコーダデコーダフレームワークで、セグメンテーションと検出の両方のタスクに対処する。
これは、ライダーのみの手法のnuScenesセグメンテーションベンチマークにおいて、83.3% mIoUの最先端性能を達成する。
論文 参考訳(メタデータ) (2024-06-11T07:26:54Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
本稿では,局所レーングラフの推定精度を向上させるために,アーキテクチャと損失の定式化を提案する。
提案手法は,中心線をクラスタ中心とすることで,対象を中心線に割り当てることを学ぶ。
提案手法は既存の3次元オブジェクト検出手法の出力を用いて,大幅な性能向上を実現することができることを示す。
論文 参考訳(メタデータ) (2023-07-20T15:21:28Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL)メソッドは、複数のオブジェクトでイメージを処理する際に、画像レベルの特徴表現を使用する際の制限に対処する。
本研究は, 層深度やゼロパディングに伴う受容野の増大によって生じる, 結合と位置バイアスに悩まされていることを示す。
我々はCOCOにおける本手法の利点と、オブジェクト分類、セマンティックセグメンテーション、オブジェクト検出のための新しい挑戦的ベンチマークであるOpenImage-MINIについて示す。
論文 参考訳(メタデータ) (2023-03-29T18:07:25Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
我々は,モノクロ画像から未確認物体の3次元配向を推定する作業に取り組む。
我々は検索ベースの戦略に従い、ネットワークがオブジェクト固有の特徴を学習するのを防ぐ。
また,LineMOD,LineMOD-Occluded,T-LESSのデータセットを用いた実験により,本手法が従来の手法よりもはるかに優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2022-03-16T08:53:00Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
現在の物体検出器は、高い精度と高速な推論速度のバランスを取るのが難しい。
ロボットつかみポーズ推定を行うための効率的かつ堅牢な完全畳み込みニューラルネットワークモデルを提案する。
ネットワークは、他の優れたアルゴリズムよりも桁違いに小さい順序です。
論文 参考訳(メタデータ) (2021-01-25T16:36:53Z) - An End-to-end Framework For Low-Resolution Remote Sensing Semantic
Segmentation [0.5076419064097732]
超解像とセマンティックセグメンテーションモジュールを結合したエンドツーエンドフレームワークを提案する。
これにより、セマンティックセグメンテーションネットワークが再構成プロセスを実行し、入力されたイメージを便利なテクスチャで修正することができる。
その結果,本フレームワークは,ネイティブな高解像度データに近いセグメンテーション性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2020-03-17T21:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。