Language Models as Causal Effect Generators
- URL: http://arxiv.org/abs/2411.08019v1
- Date: Tue, 12 Nov 2024 18:50:35 GMT
- Title: Language Models as Causal Effect Generators
- Authors: Lucius E. J. Bynum, Kyunghyun Cho,
- Abstract summary: We present a framework for large language model (LLM) based data generation with controllable causal structure.
We define a procedure for turning any language model and any directed acyclic graph (DAG) into a sequence-driven structural causal model (SD-SCM)
- Score: 44.820140872666435
- License:
- Abstract: We present a framework for large language model (LLM) based data generation with controllable causal structure. In particular, we define a procedure for turning any language model and any directed acyclic graph (DAG) into a sequence-driven structural causal model (SD-SCM). Broadly speaking, an SD-SCM is a causal model with user-defined structure and LLM-defined structural equations. We characterize how an SD-SCM allows sampling from observational, interventional, and counterfactual distributions according to the desired causal structure. We then leverage this procedure to propose a new type of benchmark for causal inference methods, generating individual-level counterfactual data without needing to manually specify functional relationships between variables. We create an example benchmark consisting of thousands of datasets, and test a suite of popular estimation methods on these datasets for average, conditional average, and individual treatment effect estimation, both with and without hidden confounding. Apart from generating data, the same procedure also allows us to test for the presence of a causal effect that might be encoded in an LLM. This procedure can underpin auditing LLMs for misinformation, discrimination, or otherwise undesirable behavior. We believe SD-SCMs can serve as a useful tool in any application that would benefit from sequential data with controllable causal structure.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Standardizing Structural Causal Models [80.21199731817698]
We propose internally-standardized structural causal models (iSCMs) for benchmarking algorithms.
By construction, iSCMs are not $operatornameVar$-sortable, and as we show experimentally, not $operatornameR2$-sortable either for commonly-used graph families.
arXiv Detail & Related papers (2024-06-17T14:52:21Z) - Can LLMs Separate Instructions From Data? And What Do We Even Mean By That? [60.50127555651554]
Large Language Models (LLMs) show impressive results in numerous practical applications, but they lack essential safety features.
This makes them vulnerable to manipulations such as indirect prompt injections and generally unsuitable for safety-critical tasks.
We introduce a formal measure for instruction-data separation and an empirical variant that is calculable from a model's outputs.
arXiv Detail & Related papers (2024-03-11T15:48:56Z) - iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models [48.33685559041322]
This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables.
Code implementing the proposed method is open-source and publicly available at https://github.com/kevinsbello/iSCAN.
arXiv Detail & Related papers (2023-06-30T01:48:11Z) - Representation Disentaglement via Regularization by Causal
Identification [3.9160947065896803]
We propose the use of a causal collider structured model to describe the underlying data generative process assumptions in disentangled representation learning.
For this, we propose regularization by identification (ReI), a modular regularization engine designed to align the behavior of large scale generative models with the disentanglement constraints imposed by causal identification.
arXiv Detail & Related papers (2023-02-28T23:18:54Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.