論文の概要: GraphAide: Advanced Graph-Assisted Query and Reasoning System
- arxiv url: http://arxiv.org/abs/2411.08041v1
- Date: Tue, 29 Oct 2024 07:25:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 09:02:01.795774
- Title: GraphAide: Advanced Graph-Assisted Query and Reasoning System
- Title(参考訳): GraphAide: 高度なグラフ支援クエリと推論システム
- Authors: Sumit Purohit, George Chin, Patrick S Mackey, Joseph A Cottam,
- Abstract要約: 多様なソースから知識グラフ(KG)を構築し,結果のKGに対してクエリと推論を行う,高度なクエリと推論システムであるGraphAideを導入する。
GraphAideはLarge Language Models(LLM)を利用して、ドメイン固有のデジタルアシスタントを迅速に開発する。
- 参考スコア(独自算出の注目度): 0.04999814847776096
- License:
- Abstract: Curating knowledge from multiple siloed sources that contain both structured and unstructured data is a major challenge in many real-world applications. Pattern matching and querying represent fundamental tasks in modern data analytics that leverage this curated knowledge. The development of such applications necessitates overcoming several research challenges, including data extraction, named entity recognition, data modeling, and designing query interfaces. Moreover, the explainability of these functionalities is critical for their broader adoption. The emergence of Large Language Models (LLMs) has accelerated the development lifecycle of new capabilities. Nonetheless, there is an ongoing need for domain-specific tools tailored to user activities. The creation of digital assistants has gained considerable traction in recent years, with LLMs offering a promising avenue to develop such assistants utilizing domain-specific knowledge and assumptions. In this context, we introduce an advanced query and reasoning system, GraphAide, which constructs a knowledge graph (KG) from diverse sources and allows to query and reason over the resulting KG. GraphAide harnesses both the KG and LLMs to rapidly develop domain-specific digital assistants. It integrates design patterns from retrieval augmented generation (RAG) and the semantic web to create an agentic LLM application. GraphAide underscores the potential for streamlined and efficient development of specialized digital assistants, thereby enhancing their applicability across various domains.
- Abstract(参考訳): 構造化データと非構造化データの両方を含む複数のサイロソースからの知識の収集は、多くの現実世界のアプリケーションにおいて大きな課題である。
パターンマッチングとクエリは、このキュレートされた知識を活用する現代のデータ分析における基本的なタスクである。
このようなアプリケーションの開発には、データ抽出、名前付きエンティティ認識、データモデリング、クエリインターフェースの設計など、いくつかの研究課題を克服する必要がある。
さらに、これらの機能を説明することは、より広く採用するために重要である。
LLM(Large Language Models)の出現は、新しい機能の開発ライフサイクルを加速させた。
それでも、ユーザアクティビティに合わせて、ドメイン固有のツールが必要である。
近年,デジタルアシスタントの開発が盛んに行われており,LLMはドメイン固有の知識と仮定を利用して,そのようなアシスタントを開発するための有望な道筋を提供する。
そこで我々は,知識グラフ(KG)を多種多様な情報源から構築し,得られたKGに対してクエリと推論を可能にする,高度なクエリと推論システムであるGraphAideを導入する。
GraphAideはKGとLLMの両方を利用して、ドメイン固有のデジタルアシスタントを迅速に開発する。
検索拡張生成(RAG)とセマンティックウェブからデザインパターンを統合し、エージェントLLMアプリケーションを作成する。
GraphAideは、特殊なデジタルアシスタントの合理化と効率的な開発の可能性を強調し、様々な分野に適用性を高める。
関連論文リスト
- GUI Agents with Foundation Models: A Comprehensive Survey [52.991688542729385]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
データ、フレームワーク、アプリケーションにおける重要なイノベーションを強調します。
本稿では, (M)LLM ベースの GUI エージェントの分野におけるさらなる発展を期待する。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data [14.328402787379538]
本稿では,自然言語インタラクションによる知識管理プラットフォームである AgentiGraph (タスクベースインタラクションとグラフィカル表現のための適応生成ENgine) を紹介する。
AgentiGraphはマルチエージェントアーキテクチャを使用して、ユーザの意図を動的に解釈し、タスクを管理し、新しい知識を統合する。
3,500のテストケースのデータセットの実験結果から、AgentiGraphは最先端のゼロショットベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-15T12:05:58Z) - Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
大規模言語モデル(LLM)は活発な研究トピックとして現れている。
LLMはイベントの記憶、新しい情報の導入、ドメイン固有の問題や幻覚への対処において課題に直面している。
本稿では,複数のデータソースから知識グラフを自動的に構築する手法を提案する。
論文 参考訳(メタデータ) (2024-04-14T16:34:31Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
グラフ生成は、与えられたプロパティを持つグラフを生成するために、大きな言語モデル(LLM)を必要とする。
本稿では,LLMのグラフ生成能力について,系統的なタスク設計と実験による検討を行う。
評価の結果,LLM,特にGPT-4は,グラフ生成タスクに予備的能力を示すことがわかった。
論文 参考訳(メタデータ) (2024-03-21T12:37:54Z) - GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
グラフ対応LAnguage Models (GLaM) を開発するためのフレームワークを紹介する。
特定のグラフに基づく知識でモデルを構築することは、構造に基づく推論のためのモデルの能力を拡張することを実証する。
論文 参考訳(メタデータ) (2024-02-09T19:53:29Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
本稿では,最新の生成型大規模言語モデルの可能性を活用する,革新的な知識グラフ生成手法を提案する。
このアプローチは、新しい反復的なゼロショットと外部知識に依存しない戦略を含むパイプラインで伝達される。
我々は、我々の提案がスケーラブルで多目的な知識グラフ構築に適したソリューションであり、異なる新しい文脈に適用できると主張している。
論文 参考訳(メタデータ) (2023-07-03T16:01:45Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
本論文は,知識グラフの自動構築と完成の技術をテキストから改善することを目的としている。
この文脈では、新しいパラダイムの1つは、言語モデルがプロンプトとともにそのまま使われる、コンテキスト内学習である。
論文 参考訳(メタデータ) (2023-05-15T17:10:19Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。