Online Collision Risk Estimation via Monocular Depth-Aware Object Detectors and Fuzzy Inference
- URL: http://arxiv.org/abs/2411.08060v1
- Date: Sat, 09 Nov 2024 20:20:36 GMT
- Title: Online Collision Risk Estimation via Monocular Depth-Aware Object Detectors and Fuzzy Inference
- Authors: Brian Hsuan-Cheng Liao, Yingjie Xu, Chih-Hong Cheng, Hasan Esen, Alois Knoll,
- Abstract summary: The framework takes two sets of predictions produced by different algorithms and associates their inconsistencies with the collision risk via fuzzy inference.
We experimentally validate that, based on Intersection-over-Union (IoU) and a depth discrepancy measure, the inconsistencies between the two sets of predictions strongly correlate to the safety-related error of the 3D object detector.
- Score: 6.856508678236828
- License:
- Abstract: This paper presents a monitoring framework that infers the level of autonomous vehicle (AV) collision risk based on its object detector's performance using only monocular camera images. Essentially, the framework takes two sets of predictions produced by different algorithms and associates their inconsistencies with the collision risk via fuzzy inference. The first set of predictions is obtained through retrieving safety-critical 2.5D objects from a depth map, and the second set comes from the AV's 3D object detector. We experimentally validate that, based on Intersection-over-Union (IoU) and a depth discrepancy measure, the inconsistencies between the two sets of predictions strongly correlate to the safety-related error of the 3D object detector against ground truths. This correlation allows us to construct a fuzzy inference system and map the inconsistency measures to an existing collision risk indicator. In particular, we apply various knowledge- and data-driven techniques and find using particle swarm optimization that learns general fuzzy rules gives the best mapping result. Lastly, we validate our monitor's capability to produce relevant risk estimates with the large-scale nuScenes dataset and show it can safeguard an AV in closed-loop simulations.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Illicit item detection in X-ray images for security applications [7.519872646378835]
Automated detection of contraband items in X-ray images can significantly increase public safety.
Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task.
This paper proposes a two-fold improvement of such algorithms for the X-ray analysis domain.
arXiv Detail & Related papers (2023-05-03T07:28:05Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Active Learning of Neural Collision Handler for Complex 3D Mesh
Deformations [68.0524382279567]
We present a robust learning algorithm to detect and handle collisions in 3D deforming meshes.
Our approach outperforms supervised learning methods and achieves $93.8-98.1%$ accuracy.
arXiv Detail & Related papers (2021-10-08T04:08:31Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - Anomaly Detection in Unsupervised Surveillance Setting Using Ensemble of
Multimodal Data with Adversarial Defense [0.3867363075280543]
In this paper, an ensemble detection mechanism is proposed which estimates the degree of abnormality of analyzing the real-time image and IMU (Inertial Measurement Unit) sensor data.
The proposed method performs satisfactorily on the IEEE SP Cup-2020 dataset with an accuracy of 97.8%.
arXiv Detail & Related papers (2020-07-17T20:03:02Z) - MonoPair: Monocular 3D Object Detection Using Pairwise Spatial
Relationships [11.149904308044356]
We propose a novel method to improve the monocular 3D object detection by considering the relationship of paired samples.
Specifically, the proposed detector computes uncertainty-aware predictions for object locations and 3D distances for the adjacent object pairs.
Experiments demonstrate that our method yields the best performance on KITTI 3D detection benchmark, by outperforming state-of-the-art competitors by wide margins.
arXiv Detail & Related papers (2020-03-01T15:37:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.