論文の概要: Modeling variable guide efficiency in pooled CRISPR screens with ContrastiveVI+
- arxiv url: http://arxiv.org/abs/2411.08072v1
- Date: Mon, 11 Nov 2024 19:16:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:59.699013
- Title: Modeling variable guide efficiency in pooled CRISPR screens with ContrastiveVI+
- Title(参考訳): ContrastiveVI+を用いたCRISPRスクリーンの可変ガイド効率のモデル化
- Authors: Ethan Weinberger, Ryan Conrad, Tal Ashuach,
- Abstract要約: ContrastiveVI+は、摂動に関連するバリエーションから摂動によって引き起こされる摂動を歪ませる生成的モデリングフレームワークである。
3つの大規模Perturb-seqデータセットに適用される。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License:
- Abstract: Genetic screens mediated via CRISPR-Cas9 combined with high-content readouts have emerged as powerful tools for biological discovery. However, computational analyses of these screens come with additional challenges beyond those found with standard scRNA-seq analyses. For example, perturbation-induced variations of interest may be subtle and masked by other dominant source of variation shared with controls, and variable guide efficiency results in some cells not undergoing genetic perturbation despite expressing a guide RNA. While a number of methods have been developed to address the former problem by explicitly disentangling perturbation-induced variations from those shared with controls, less attention has been paid to the latter problem of noisy perturbation labels. To address this issue, here we propose ContrastiveVI+, a generative modeling framework that both disentangles perturbation-induced from non-perturbation-related variations while also inferring whether cells truly underwent genomic edits. Applied to three large-scale Perturb-seq datasets, we find that ContrastiveVI+ better recovers known perturbation-induced variations compared to previous methods while successfully identifying cells that escaped the functional consequences of guide RNA expression. An open-source implementation of our model is available at \url{https://github.com/insitro/contrastive_vi_plus}.
- Abstract(参考訳): CRISPR-Cas9と高濃度の読み出しが組み合わさって、生物学的発見のための強力なツールとして登場した。
しかし、これらのスクリーンの計算分析は、標準の scRNA-seq 解析で見られるもの以上の課題を伴っている。
例えば、摂動によって引き起こされる関心の変化は、制御と共有される他の支配的な変化源によって微妙に隠蔽され、可変誘導効率は、ガイドRNAを発現しているにもかかわらず遺伝的摂動を起こさない細胞によってもたらされる。
制御で共有されるものから摂動誘起の変動を明示的に解き放つことで,従来の問題に対処する手法が数多く開発されているが,ノイズの多い摂動ラベルの後者の問題にはあまり注意が払われていない。
本稿では,非摂動関連変異による摂動を解析し,細胞が真にゲノム編集を受けたかどうかを推定する生成モデルであるContrastiveVI+を提案する。
3つの大規模Perturb-seqデータセットに適用すると、ContrastiveVI+は、従来の方法と比較して、既知の摂動誘発の変動をよりよく回復し、ガイドRNA発現の機能的結果から逃れた細胞を同定することに成功した。
我々のモデルのオープンソース実装は、 \url{https://github.com/insitro/contrastive_vi_plus}で利用可能です。
関連論文リスト
- CSGDN: Contrastive Signed Graph Diffusion Network for Predicting Crop Gene-phenotype Associations [6.5678927417916455]
我々は、より少ないトレーニングサンプルでロバストなノード表現を学習し、より高いリンク予測精度を実現するために、コントラスト符号付きグラフ拡散ネットワーク(CSGDN)を提案する。
Gossypium hirsutum, Brassica napus, Triticum turgidumの3つの作物データセット上でCSGDNの有効性を検証する実験を行った。
論文 参考訳(メタデータ) (2024-10-10T01:01:10Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
マルチモーダル単細胞数に対するフローベース条件生成モデルであるセルフロー・フォー・ジェネレーションを提案する。
本研究は, 新規な生成タスクを考慮に入れた上で, 重要な生物学的データ特性の回復性の向上を示唆するものである。
論文 参考訳(メタデータ) (2024-07-16T14:05:03Z) - Predicting loss-of-function impact of genetic mutations: a machine
learning approach [0.0]
本稿では,遺伝子変異の属性に基づいて機械学習モデルを学習し,LoFtoolスコアを予測することを目的とする。
これらの属性には、染色体上の突然変異の位置、アミノ酸の変化、変異によって引き起こされるコドンの変化が含まれていた。
モデルは, 平均2乗誤差, 平均2乗誤差, 平均2乗誤差, 平均絶対誤差, 説明分散の5倍のクロスバリデード平均を用いて評価した。
論文 参考訳(メタデータ) (2024-01-26T19:27:38Z) - Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning
and Autoregression [70.78523583702209]
深層ニューラルネットワークを用いた行動クローニングの訓練不安定性について検討した。
トレーニング中のSGD更新の最小化は,長期的報奨の急激な振動をもたらすことが観察された。
論文 参考訳(メタデータ) (2023-10-17T17:39:40Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling [3.2435888122704037]
本稿では,各摂動を未知の,しかしスパースな,潜伏変数のサブセットを標的とした介入として扱う単一細胞遺伝子発現データの深部生成モデルを提案する。
これらの手法をシミュレーションした単一セルデータ上でベンチマークし、潜伏単位回復、因果的目標同定、領域外一般化における性能を評価する。
論文 参考訳(メタデータ) (2022-11-07T15:47:40Z) - InForecaster: Forecasting Influenza Hemagglutinin Mutations Through the
Lens of Anomaly Detection [3.5213888068272197]
異常検出(AD)は機械学習(ML)において確立された分野である
我々は,異常検出(AD)によってこの問題に取り組むことを提案する。
公開されている4つのデータセットに対して、多数の実験を行います。
論文 参考訳(メタデータ) (2022-10-25T02:08:09Z) - Gene Regulatory Network Inference with Latent Force Models [1.2691047660244335]
タンパク質合成の遅延は、RNAシークエンシング時系列データから遺伝子制御ネットワーク(GRN)を構築する際に相反する効果をもたらす。
実験データに適合するメカニスティック方程式とベイズ的アプローチを組み合わせることで,翻訳遅延を組み込んだモデルを提案する。
論文 参考訳(メタデータ) (2020-10-06T09:03:34Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。