論文の概要: Adaptive Meta-Learning for Robust Deepfake Detection: A Multi-Agent Framework to Data Drift and Model Generalization
- arxiv url: http://arxiv.org/abs/2411.08148v1
- Date: Tue, 12 Nov 2024 19:55:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:11:30.562505
- Title: Adaptive Meta-Learning for Robust Deepfake Detection: A Multi-Agent Framework to Data Drift and Model Generalization
- Title(参考訳): ロバストディープフェイク検出のための適応型メタラーニング:データドリフトとモデル一般化のためのマルチエージェントフレームワーク
- Authors: Dinesh Srivasthav P, Badri Narayan Subudhi,
- Abstract要約: 本稿では,タスク固有適応型サンプル合成と整合性正規化を用いた対角的メタ学習アルゴリズムを提案する。
これにより、モデルの堅牢性と一般化の両方が促進される。
実験結果は、モデルが様々なデータセットにわたって一貫した性能を示し、比較したモデルよりも優れていることを示している。
- 参考スコア(独自算出の注目度): 6.589206192038365
- License:
- Abstract: Pioneering advancements in artificial intelligence, especially in genAI, have enabled significant possibilities for content creation, but also led to widespread misinformation and false content. The growing sophistication and realism of deepfakes is raising concerns about privacy invasion, identity theft, and has societal, business impacts, including reputational damage and financial loss. Many deepfake detectors have been developed to tackle this problem. Nevertheless, as for every AI model, the deepfake detectors face the wrath of lack of considerable generalization to unseen scenarios and cross-domain deepfakes. Besides, adversarial robustness is another critical challenge, as detectors drastically underperform to the slightest imperceptible change. Most state-of-the-art detectors are trained on static datasets and lack the ability to adapt to emerging deepfake attack trends. These three crucial challenges though hold paramount importance for reliability in practise, particularly in the deepfake domain, are also the problems with any other AI application. This paper proposes an adversarial meta-learning algorithm using task-specific adaptive sample synthesis and consistency regularization, in a refinement phase. By focussing on the classifier's strengths and weaknesses, it boosts both robustness and generalization of the model. Additionally, the paper introduces a hierarchical multi-agent retrieval-augmented generation workflow with a sample synthesis module to dynamically adapt the model to new data trends by generating custom deepfake samples. The paper further presents a framework integrating the meta-learning algorithm with the hierarchical multi-agent workflow, offering a holistic solution for enhancing generalization, robustness, and adaptability. Experimental results demonstrate the model's consistent performance across various datasets, outperforming the models in comparison.
- Abstract(参考訳): 人工知能のパイオニア的進歩、特にgenAIは、コンテンツ作成の可能性を大いに生み出しているが、誤情報や偽コンテンツが広範に広まっている。
ディープフェイクの洗練と現実主義の高まりは、プライバシーの侵害、アイデンティティの盗難、社会的、ビジネス的影響、評判のダメージ、財務的損失に関する懸念を高めている。
この問題に対処するために多くのディープフェイク検出器が開発された。
それでも、すべてのAIモデルについて、ディープフェイク検出器は、目に見えないシナリオやドメイン横断のディープフェイクに対するかなりの一般化の欠如に直面している。
さらに、敵の頑丈さも重要な課題であり、検出器はわずかに知覚不可能な変化に対して大幅に性能が低下している。
ほとんどの最先端検出器は静的データセットでトレーニングされており、新たなディープフェイク攻撃トレンドに適応する能力がない。
これらの3つの重要な課題は、特にディープフェイクドメインにおいて、練習における信頼性において最重要とされているが、他のAIアプリケーションの問題でもある。
本稿では,タスク固有の適応型サンプル合成と整合性正規化を用いた対角的メタ学習アルゴリズムを提案する。
分類器の強みと弱みに焦点をあてることで、モデルの堅牢性と一般化の両方を促進する。
さらに、サンプル合成モジュールを備えた階層型マルチエージェント検索拡張生成ワークフローを導入し、独自のディープフェイクサンプルを生成して、モデルを新しいデータトレンドに動的に適応させる。
さらに,メタ学習アルゴリズムを階層型マルチエージェントワークフローに統合し,一般化,堅牢性,適応性を向上させるための総合的なソリューションを提供するフレームワークを提案する。
実験結果は、モデルが様々なデータセットにわたって一貫した性能を示し、比較したモデルよりも優れていることを示している。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Diffusion Deepfake [41.59597965760673]
生成AIの最近の進歩は、主に拡散モデルを通じて、現実世界のディープフェイク検出において大きな課題を呈している。
画像の詳細、多様なコンテンツ、そして一般大衆への幅広いアクセス性におけるリアリズムの増加は、これらの洗練されたディープフェイクの識別を複雑にしている。
本稿では,最先端拡散モデルにより生成された2つの広範囲なディープフェイクデータセットを紹介する。
論文 参考訳(メタデータ) (2024-04-02T02:17:50Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
論文 参考訳(メタデータ) (2024-03-29T19:09:08Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Quality-Agnostic Deepfake Detection with Intra-model Collaborative
Learning [26.517887637150594]
Deepfakeは最近、セキュリティ上の脅威と偽情報の拡散に関して、多くの社会的懸念を提起した。
多くのSOTAアプローチは、特定のディープフェイクビデオ品質タイプを検出するために単一の特定モデルを使用することによって制限される。
本研究では,異なる品質のディープフェイクを効果的かつ同時検出できる汎用的なモデル内協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-12T02:01:31Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。