論文の概要: Hashing for Protein Structure Similarity Search
- arxiv url: http://arxiv.org/abs/2411.08286v1
- Date: Wed, 13 Nov 2024 02:02:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:11:47.740778
- Title: Hashing for Protein Structure Similarity Search
- Title(参考訳): タンパク質構造類似検索のためのハッシュ
- Authors: Jin Han, Wu-Jun Li,
- Abstract要約: タンパク質構造類似性探索(PSSS)の新しい手法を提案する。
Underlinetextp$runderlinetexto$tein $underlinetexts$tructure $underlinetexth$ashing (POSH) for PSSS。
POSHは各タンパク質構造に対するバイナリベクトル表現を学習し、PSSSの時間とメモリコストを劇的に削減することができる。
- 参考スコア(独自算出の注目度): 19.352125515561287
- License:
- Abstract: Protein structure similarity search (PSSS), which tries to search proteins with similar structures, plays a crucial role across diverse domains from drug design to protein function prediction and molecular evolution. Traditional alignment-based PSSS methods, which directly calculate alignment on the protein structures, are highly time-consuming with high memory cost. Recently, alignment-free methods, which represent protein structures as fixed-length real-valued vectors, are proposed for PSSS. Although these methods have lower time and memory cost than alignment-based methods, their time and memory cost is still too high for large-scale PSSS, and their accuracy is unsatisfactory. In this paper, we propose a novel method, called $\underline{\text{p}}$r$\underline{\text{o}}$tein $\underline{\text{s}}$tructure $\underline{\text{h}}$ashing (POSH), for PSSS. POSH learns a binary vector representation for each protein structure, which can dramatically reduce the time and memory cost for PSSS compared with real-valued vector representation based methods. Furthermore, in POSH we also propose expressive hand-crafted features and a structure encoder to well model both node and edge interactions in proteins. Experimental results on real datasets show that POSH can outperform other methods to achieve state-of-the-art accuracy. Furthermore, POSH achieves a memory saving of more than six times and speed improvement of more than four times, compared with other methods.
- Abstract(参考訳): 類似した構造を持つタンパク質を探索しようとするタンパク質構造類似性探索(PSSS)は、薬物設計からタンパク質機能予測、分子進化に至るまで、様々な領域で重要な役割を果たしている。
タンパク質構造のアライメントを直接計算する従来のアライメントベースのPSSS法は、高いメモリコストで非常に時間がかかる。
近年,PSSSにおいてタンパク質構造を固定長実数値ベクトルとして表現するアライメントフリー手法が提案されている。
これらの手法はアライメントベースの手法よりも時間とメモリコストが低いが、大規模なPSSSでは時間とメモリコストが高すぎるため、精度は不十分である。
本稿では,PSSS に対して $\underline{\text{p}}$r$\underline{\text{o}}$tein $\underline{\text{s}}$tructure $\underline{\text{h}}$ashing (POSH) という新しい手法を提案する。
POSHは各タンパク質構造に対するバイナリベクトル表現を学習し、実数値ベクトル表現に基づく手法と比較してPSSSの時間とメモリコストを劇的に削減することができる。
さらに,POSHでは,タンパク質のノード間相互作用とエッジ間相互作用をうまくモデル化する構造エンコーダも提案している。
実際のデータセットに対する実験結果から、POSHは他の手法よりも高い精度で最先端の精度を達成できることが示された。
さらに、POSHは他の方法に比べて6倍以上のメモリ節約と4倍以上のスピード向上を実現している。
関連論文リスト
- Protein Representation Learning with Sequence Information Embedding: Does it Always Lead to a Better Performance? [4.7077642423577775]
本稿では,アミノ酸構造表現のみに基づく局所幾何アライメント手法ProtLOCAを提案する。
本手法は,構造的に整合性のあるタンパク質ドメインとより迅速かつ正確にマッチングすることで,既存の配列および構造に基づく表現学習法より優れる。
論文 参考訳(メタデータ) (2024-06-28T08:54:37Z) - PDB-Struct: A Comprehensive Benchmark for Structure-based Protein Design [19.324059406159325]
我々は、リフォールダビリティベースのメトリクスと安定性ベースのメトリクスの2つの新しい指標を紹介した。
ByProt、ProteinMPNN、ESM-IFはベンチマークで非常によく機能しますが、ESM-DesignとAF-Designは不足しています。
提案するベンチマークは,タンパク質設計手法の公平かつ包括的な評価方法である。
論文 参考訳(メタデータ) (2023-11-30T02:37:55Z) - FABind: Fast and Accurate Protein-Ligand Binding [127.7790493202716]
$mathbfFABind$はポケット予測とドッキングを組み合わせたエンドツーエンドモデルで、正確で高速なタンパク質-リガンド結合を実現する。
提案モデルでは,既存手法と比較して有効性と効率性に強い利点が示される。
論文 参考訳(メタデータ) (2023-10-10T16:39:47Z) - PoET: A generative model of protein families as sequences-of-sequences [5.05828899601167]
本稿では,関連タンパク質の集合を配列配列として生成する過程を学習するタンパク質ファミリー全体の生成モデルを提案する。
PoETは検索拡張言語モデルとして使用することができ、任意のタンパク質ファミリーに設定された任意の変更を生成し、スコア付けすることができる。
以上の結果から,PoETはタンパク質言語モデルと進化的配列モデルに優れており,全ての深さのタンパク質をまたいだ変異関数の予測が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-09T16:06:36Z) - DiffDock-PP: Rigid Protein-Protein Docking with Diffusion Models [47.73386438748902]
DiffDock-PPは拡散生成モデルであり、非有界タンパク質構造をそれらの有界配座に翻訳し回転させる。
中央値C-RMSDが4.85でDIPSの最先端性能を達成し,すべてのベースラインを上回りました。
論文 参考訳(メタデータ) (2023-04-08T02:10:44Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - HelixFold-Single: MSA-free Protein Structure Prediction by Using Protein
Language Model as an Alternative [61.984700682903096]
HelixFold-Singleは、大規模なタンパク質言語モデルとAlphaFold2の優れた幾何学的学習能力を組み合わせるために提案されている。
提案手法は,数千万の一次配列を持つ大規模タンパク質言語モデルを事前学習する。
我々は、一次系列のみから原子の3次元座標を予測するために、エンドツーエンドの微分可能なモデルを得る。
論文 参考訳(メタデータ) (2022-07-28T07:30:33Z) - Pre-training Co-evolutionary Protein Representation via A Pairwise
Masked Language Model [93.9943278892735]
タンパク質配列表現学習の鍵となる問題は、配列中の残基間の共変量によって反映される共進化情報をキャプチャすることである。
Pairwise Masked Language Model (PMLM) と呼ばれる専用言語モデルによる事前学習により,この情報を直接キャプチャする新しい手法を提案する。
提案手法は, 相互関係を効果的に把握し, ベースラインと比較して, 接触予測性能を最大9%向上できることを示す。
論文 参考訳(メタデータ) (2021-10-29T04:01:32Z) - DIPS-Plus: The Enhanced Database of Interacting Protein Structures for
Interface Prediction [2.697420611471228]
DIPS-Plusはタンパク質界面の幾何学的深層学習のための42,112複合体の強化された機能豊富なデータセットである。
DIPSの以前のバージョンは、与えられたタンパク質複合体を構成する原子のカルテシアン座標とタイプのみを含む。
DIPS-Plusには、プロテクション指標、半球アミノ酸組成、および各アミノ酸に対する新しいプロファイル隠れマルコフモデル(HMM)ベースの配列機能を含む、新しい残基レベルの特徴が多数含まれている。
論文 参考訳(メタデータ) (2021-06-06T23:56:27Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。