Communication Efficient Decentralization for Smoothed Online Convex Optimization
- URL: http://arxiv.org/abs/2411.08355v1
- Date: Wed, 13 Nov 2024 05:59:04 GMT
- Title: Communication Efficient Decentralization for Smoothed Online Convex Optimization
- Authors: Neelkamal Bhuyan, Debankur Mukherjee, Adam Wierman,
- Abstract summary: We study the multi-agent Smoothed Online Convex Optimization (SOCO) problem, where $N$ agents interact through a communication graph.
In each round, each agent $i$ receives a strongly convex hitting cost function $fi_t$ in an online fashion.
Our results hold even when the communication graph changes arbitrarily and adaptively over time.
- Score: 9.449153668916098
- License:
- Abstract: We study the multi-agent Smoothed Online Convex Optimization (SOCO) problem, where $N$ agents interact through a communication graph. In each round, each agent $i$ receives a strongly convex hitting cost function $f^i_t$ in an online fashion and selects an action $x^i_t \in \mathbb{R}^d$. The objective is to minimize the global cumulative cost, which includes the sum of individual hitting costs $f^i_t(x^i_t)$, a temporal "switching cost" for changing decisions, and a spatial "dissimilarity cost" that penalizes deviations in decisions among neighboring agents. We propose the first decentralized algorithm for multi-agent SOCO and prove its asymptotic optimality. Our approach allows each agent to operate using only local information from its immediate neighbors in the graph. For finite-time performance, we establish that the optimality gap in competitive ratio decreases with the time horizon $T$ and can be conveniently tuned based on the per-round computation available to each agent. Moreover, our results hold even when the communication graph changes arbitrarily and adaptively over time. Finally, we establish that the computational complexity per round depends only logarithmically on the number of agents and almost linearly on their degree within the graph, ensuring scalability for large-system implementations.
Related papers
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.
We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.
Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization [9.449153668916098]
We study the smoothed online optimization (SOQO) problem where, at each round $t$, a player plays an action $x_t in response to a quadratic hitting cost and an additional squared $ell$-norm cost for switching actions.
This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management.
We present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal performance.
arXiv Detail & Related papers (2023-10-31T22:59:23Z) - Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback [75.29048190099523]
Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions.
In this paper, we design a fully adaptive OGD algorithm, textsfAdaOGD, that does not require a priori knowledge of these parameters.
arXiv Detail & Related papers (2023-10-21T18:38:13Z) - PRECISION: Decentralized Constrained Min-Max Learning with Low
Communication and Sample Complexities [25.153506493249854]
We show an adaptive multi-agent learning technique for min-max optimization problems.
We also propose an algorithm called PRECISION that enjoys a reduction in the number of iterations.
arXiv Detail & Related papers (2023-03-05T00:26:10Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Pick your Neighbor: Local Gauss-Southwell Rule for Fast Asynchronous
Decentralized Optimization [37.85806148420504]
In decentralized optimization environments, each agent $i$ in a network of $n$ optimization nodes possesses a private function $f_i$.
We introduce an optimization-aware selection rule that chooses the neighbor with the highest dual cost improvement.
We show that the proposed set-wise GS rule achieves a speedup by a factor of up to the maximum degree in the network.
arXiv Detail & Related papers (2022-07-15T15:37:03Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Online Apprenticeship Learning [58.45089581278177]
In Apprenticeship Learning (AL), we are given a Markov Decision Process (MDP) without access to the cost function.
The goal is to find a policy that matches the expert's performance on some predefined set of cost functions.
We show that the OAL problem can be effectively solved by combining two mirror descent based no-regret algorithms.
arXiv Detail & Related papers (2021-02-13T12:57:51Z) - The Min-Max Complexity of Distributed Stochastic Convex Optimization
with Intermittent Communication [61.60069865891783]
We resolve the min-max complexity of distributed convex optimization (up to a log factor) in the intermittent communication setting.
We present a novel lower bound with a matching upper bound that establishes an optimal algorithm.
arXiv Detail & Related papers (2021-02-02T16:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.