10 GHz Robust polarization modulation towards high-speed satellite-based quantum communication
- URL: http://arxiv.org/abs/2411.08358v1
- Date: Wed, 13 Nov 2024 06:15:24 GMT
- Title: 10 GHz Robust polarization modulation towards high-speed satellite-based quantum communication
- Authors: Zexu Wang, Huaxing Xu, Ju Li, Jinquan Huang, Hui Han, Changlei Wang, Ping Zhang, Feifei Yin, Kun Xu, Bo Liu, Yitang Dai,
- Abstract summary: We propose a robust, low-error and high-speed polarization modulation scheme.
The proposed scheme extends the transmission distance to more than 350 km.
Our work can be efficient performed to the high-speed and high-loss satellite-based quantum communication scenario.
- Score: 9.112579612467824
- License:
- Abstract: In practical satellite-based quantum key distribution (QKD) systems, the preparation and transmission of polarization-encoding photons suffer from complex environmental effects and high channel-loss. Consequently, the hinge to enhancing the secure key rate (SKR) lies in achieving robust, low-error and high-speed polarization modulation. Although the schemes that realize self-compensation exhibit remarkable robustness. Their modulation speed is constrained to approximately 2 GHz to avoid the interaction between the electrical signal and the reverse optical pulses. Here we utilize the non-reciprocity of the lithium niobate modulators and eliminate the modulation on the reverse optical pulses. As this characteristic is widely available in the radio-frequency band, the modulation speed is no longer limited by the self-compensating optics and can be further increased. The measured average intrinsic QBER of the different polarization states at 10 GHz system repetition frequency is as low as 0.53% over 10 min without any compensation. And the experiment simulation shows that the proposed scheme extends the transmission distance to more than 350 km. Our work can be be efficient performed to the high-speed and high-loss satellite-based quantum communication scenario.
Related papers
- Polarization-encoded quantum key distribution with a room-temperature telecom single-photon emitter [47.54990103162742]
Single photon sources (SPSs) are directly applicable in quantum key distribution (QKD)
We report an observation of polarization-encoded QKD using a room-temperature telecom SPS based on a GaN defect.
arXiv Detail & Related papers (2024-09-25T16:17:36Z) - Switching, Amplifying, and Chirping Diode Lasers with Current Pulses for High Bandwidth Quantum Technologies [0.0]
Device for switching, amplifying, and chirping diode lasers based on current modulation are presented.
System produces watt-level optical pulses with arbitrary frequency chirps in the given range and 2% residual intensity variation.
arXiv Detail & Related papers (2024-07-26T14:50:09Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-speed photonic crystal modulator with non-volatile memory via
structurally-engineered strain concentration in a piezo-MEMS platform [0.0]
In quantum and classical optics, the transmission change per voltage (dT/dV) is a critical figure of merit for electro-optic (EO) modulators.
Here, we introduce a cavity-based EO modulator to solve both trade-offs in terms of speed and spectral tuning.
arXiv Detail & Related papers (2023-10-11T18:31:58Z) - Integrated frequency-modulated optical parametric oscillator [45.82374977939355]
We introduce an integrated optical frequency comb generator that combines electro-optics and parametric amplification.
The FM-OPO microcomb does not form pulses but maintains operational simplicity and highly efficient pump power utilization.
The FM-OPO microcomb contributes a new approach to the field of microcombs and promises to herald an era of miniaturized precision measurement.
arXiv Detail & Related papers (2023-07-09T15:08:48Z) - GHz configurable photon pair generation from a silicon nonlinear
interferometer [0.06445605125467573]
We use lossy carrier depletion modulators in a silicon waveguide nonlinear interferometer to modulate photon pair generation at 1GHz.
Super sensitivity of nonlinear interferometers reduces power consumption compared to modulating the driving laser.
arXiv Detail & Related papers (2023-05-25T13:13:36Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Spectral control of nonclassical light using an integrated thin-film
lithium niobate modulator [5.119503410288866]
We demonstrate frequency shifting and bandwidth compression of nonclassical light using an integrated thin-film lithium niobate (TFLN) phase modulator.
We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range.
Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.
arXiv Detail & Related papers (2021-12-18T16:38:00Z) - Fast Generation and Detection of Spatial Modes of Light using an
Acousto-Optic Modulator [62.997667081978825]
spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information.
Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolution phase mask.
We experimentally realize this approach, using a double-pass AOM to generate one of five orbital angular momentum states.
We are able to reconstruct arbitrary states in under 1 ms with an average fidelity of 96.9%.
arXiv Detail & Related papers (2020-07-31T14:58:30Z) - Cavity quantum electro-optics: Microwave-telecom conversion in the
quantum ground state [0.0]
We present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons.
The device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields.
arXiv Detail & Related papers (2020-05-26T14:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.