論文の概要: A survey on Graph Deep Representation Learning for Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2411.08472v1
- Date: Wed, 13 Nov 2024 09:46:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:11:11.941987
- Title: A survey on Graph Deep Representation Learning for Facial Expression Recognition
- Title(参考訳): 表情認識のためのグラフ深部表現学習に関する調査
- Authors: Théo Gueuret, Akrem Sellami, Chaabane Djeraba,
- Abstract要約: グラフ表現学習(GRL)を通して表情認識(FER)に適用される様々な手法について深く考察する。
本稿では,FERの課題とグラフ表現とGRLの概念を紹介する。
- 参考スコア(独自算出の注目度): 2.225739953805382
- License:
- Abstract: This comprehensive review delves deeply into the various methodologies applied to facial expression recognition (FER) through the lens of graph representation learning (GRL). Initially, we introduce the task of FER and the concepts of graph representation and GRL. Afterward, we discuss some of the most prevalent and valuable databases for this task. We explore promising approaches for graph representation in FER, including graph diffusion, spatio-temporal graphs, and multi-stream architectures. Finally, we identify future research opportunities and provide concluding remarks.
- Abstract(参考訳): 本総説は,表情認識(FER)に適用される様々な手法を,グラフ表現学習(GRL)のレンズを通して深く掘り下げるものである。
まず、FERのタスクとグラフ表現とGRLの概念を紹介する。
その後、このタスクで最も普及し、価値のあるデータベースについて論じる。
FERにおけるグラフ表現への有望なアプローチとして,グラフ拡散,時空間グラフ,マルチストリームアーキテクチャについて検討する。
最後に,今後の研究機会を特定し,結論を述べる。
関連論文リスト
- Disentangled Generative Graph Representation Learning [51.59824683232925]
本稿では,自己教師型学習フレームワークであるDiGGR(Disentangled Generative Graph Representation Learning)を紹介する。
潜伏要因を学習し、それをグラフマスクモデリングのガイドとして活用することを目的としている。
2つの異なるグラフ学習タスクのための11の公開データセットの実験は、DiGGRが従来よりも一貫して多くの自己教師付きメソッドを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-24T05:13:02Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
研究フロンティアとして,データ効率グラフ学習(DEGL)の新たな概念を紹介した。
我々は、自己教師付きグラフ学習、半教師付きグラフ学習、少数ショットグラフ学習など、いくつかの重要な側面に関する最近の進歩を体系的にレビューした。
論文 参考訳(メタデータ) (2024-02-01T09:28:48Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Few-Shot Learning on Graphs: A Survey [92.47605211946149]
グラフ表現学習は多くの実世界のアプリケーションで顕著な性能を持つため、大きな注目を集めている。
特定のタスクに対する半教師付きグラフ表現学習モデルは、しばしばラベル空間の問題に悩まされる。
限定的なアノテートデータ問題に直面するパフォーマンス劣化に対処するために,FSLG (Few-shot Learning on graphs) が提案されている。
論文 参考訳(メタデータ) (2022-03-17T13:21:11Z) - Deep Graph Generators: A Survey [8.641606056228675]
本稿では,深層学習に基づくグラフ生成手法に関する総合的な調査を行う。
それらは、autoregressive、autoencoderベース、rlベース、adversarial、flowベースのグラフジェネレータの5つに分類される。
また、公開ソースコード、一般的に使用されるデータセット、および最も広く使用されている評価指標も提示します。
論文 参考訳(メタデータ) (2020-12-31T11:01:33Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
私たちは、一般的な埋め込みアプローチのセットに対して、アプリケーション指向の視点を提供します。
実世界のグラフ特性に関する表現力を評価する。
GRLアプローチは現実のシナリオでは定義が困難であることが示唆された。
論文 参考訳(メタデータ) (2020-06-18T03:19:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。