論文の概要: Methodology for a Statistical Analysis of Influencing Factors on 3D Object Detection Performance
- arxiv url: http://arxiv.org/abs/2411.08482v1
- Date: Wed, 13 Nov 2024 10:01:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:04.647451
- Title: Methodology for a Statistical Analysis of Influencing Factors on 3D Object Detection Performance
- Title(参考訳): 3次元物体検出性能に及ぼす要因の統計的解析法
- Authors: Anton Kuznietsov, Dirk Schweickard, Steven Peters,
- Abstract要約: 自律運転において、物体検出は物体の局所化と分類によって環境を知覚する上で不可欠なタスクである。
ほとんどのオブジェクト検出アルゴリズムは、優れたパフォーマンスのためにディープラーニングに依存している。
本稿では,LiDARとカメラを用いた3Dオブジェクト検出器の検知性能に及ぼす対象物や環境に関連する諸要因の影響を統計的に分析する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In autonomous driving, object detection is an essential task to perceive the environment by localizing and classifying objects. Most object detection algorithms rely on deep learning for their superior performance. However, their black box nature makes it challenging to ensure safety. In this paper, we propose a first-of-its-kind methodology for statistical analysis of the influence of various factors related to the objects to detect or the environment on the detection performance of both LiDAR- and camera-based 3D object detectors. We perform a univariate analysis between each of the factors and the detection error in order to compare the strength of influence. To better identify potential sources of detection errors, we also analyze the performance in dependency of the influencing factors and examine the interdependencies between the different influencing factors. Recognizing the factors that influence detection performance helps identify robustness issues in the trained object detector and supports the safety approval of object detection systems.
- Abstract(参考訳): 自律運転において、物体検出は物体の局所化と分類によって環境を知覚する上で不可欠なタスクである。
ほとんどのオブジェクト検出アルゴリズムは、優れたパフォーマンスのためにディープラーニングに依存している。
しかし、ブラックボックスの性質は安全性を確保することを困難にしている。
本稿では,LiDARとカメラを用いた3Dオブジェクト検出器の検知性能に及ぼす対象物や環境に関連する諸要因の影響を統計的に分析する手法を提案する。
影響の強さを比較するために,各要因と検出誤差を一変量解析する。
また,検出誤差の潜在的な原因を明らかにするため,影響要因の依存性を解析し,影響要因間の相互依存性について検討する。
物体検出性能に影響を与える要因を認識することは、訓練対象検出器の堅牢性問題を特定し、物体検出システムの安全性を保証する。
関連論文リスト
- Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
本研究では,大気散乱と人間の視覚野機構に触発された新しい深層学習フレームワークを提案する。
本研究の目的は, 環境条件下での検知システムの精度と信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-02T04:03:07Z) - Fairness in Autonomous Driving: Towards Understanding Confounding Factors in Object Detection under Challenging Weather [7.736445799116692]
本研究では,最先端の変圧器を用いた物体検出装置において,歩行者の公正さを実証的に分析する。
古典的メトリクスに加えて,オブジェクト検出の様々な複雑な特性を測定するために,新しい確率ベースのメトリクスを導入する。
筆者らによる定量的分析では、現場の人口分布、天気の重大さ、歩行者のAV接近など、これまで見過ごされていた直感的な要因が、物体検出性能にどのように影響しているかを明らかにした。
論文 参考訳(メタデータ) (2024-05-31T22:35:10Z) - Object criticality for safer navigation [1.565361244756411]
対象検出器が与えられた場合、その関連性に基づいてオブジェクトをフィルタリングし、関連するオブジェクトの欠落のリスクを低減し、危険な軌道の可能性を低減し、一般的に軌道の質を向上させる。
対象物検知器を与えられた場合、その関連性に基づいてオブジェクトをフィルタリングし、失う対象のリスクを低減し、危険な軌道の可能性を低減し、一般的に軌道の質を向上させる。
論文 参考訳(メタデータ) (2024-04-25T09:02:22Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - A Quality Index Metric and Method for Online Self-Assessment of
Autonomous Vehicles Sensory Perception [164.93739293097605]
本稿では,検出品質指標(DQI)と呼ばれる新しい評価指標を提案し,カメラを用いた物体検出アルゴリズムの性能を評価する。
我々は,提案したDQI評価指標を予測するために,原画像画素とスーパーピクセルを入力として利用するスーパーピクセルベースのアテンションネットワーク(SPA-NET)を開発した。
論文 参考訳(メタデータ) (2022-03-04T22:16:50Z) - Evaluating Object (mis)Detection from a Safety and Reliability
Perspective: Discussion and Measures [1.8492669447784602]
本稿では,最も危険で運転決定に影響を及ぼす可能性が最も高い物体の正確な識別に報いる新しい物体検出手法を提案する。
我々は、最近の自律走行データセットnuScenesにモデルを適用し、9つの物体検出器を比較した。
その結果、いくつかの環境では、安全性と信頼性に重点を置いている場合、nuScenesランキングでベストに機能するオブジェクト検出器は好ましくないことが判明した。
論文 参考訳(メタデータ) (2022-03-04T09:31:20Z) - Comparative study of 3D object detection frameworks based on LiDAR data
and sensor fusion techniques [0.0]
知覚システムは、車両の環境をリアルタイムで正確に解釈する上で重要な役割を果たす。
ディープラーニング技術は、センサーから大量のデータを意味情報に変換する。
3Dオブジェクト検出法は、LiDARやステレオカメラなどのセンサーから追加のポーズデータを利用することで、オブジェクトのサイズと位置に関する情報を提供する。
論文 参考訳(メタデータ) (2022-02-05T09:34:58Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。