論文の概要: 3D Object Detection for Autonomous Driving: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2206.09474v2
- Date: Tue, 4 Apr 2023 01:46:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 19:03:02.813078
- Title: 3D Object Detection for Autonomous Driving: A Comprehensive Survey
- Title(参考訳): 自律走行のための3次元物体検出:総合的調査
- Authors: Jiageng Mao, Shaoshuai Shi, Xiaogang Wang, Hongsheng Li
- Abstract要約: 自動運転車の近くで重要な3Dオブジェクトの位置、サイズ、カテゴリをインテリジェントに予測する3Dオブジェクト検出は、認識システムの重要な部分である。
本稿では,自律運転における3次元物体検出技術の進歩を概観する。
- 参考スコア(独自算出の注目度): 48.30753402458884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving, in recent years, has been receiving increasing attention
for its potential to relieve drivers' burdens and improve the safety of
driving. In modern autonomous driving pipelines, the perception system is an
indispensable component, aiming to accurately estimate the status of
surrounding environments and provide reliable observations for prediction and
planning. 3D object detection, which intelligently predicts the locations,
sizes, and categories of the critical 3D objects near an autonomous vehicle, is
an important part of a perception system. This paper reviews the advances in 3D
object detection for autonomous driving. First, we introduce the background of
3D object detection and discuss the challenges in this task. Second, we conduct
a comprehensive survey of the progress in 3D object detection from the aspects
of models and sensory inputs, including LiDAR-based, camera-based, and
multi-modal detection approaches. We also provide an in-depth analysis of the
potentials and challenges in each category of methods. Additionally, we
systematically investigate the applications of 3D object detection in driving
systems. Finally, we conduct a performance analysis of the 3D object detection
approaches, and we further summarize the research trends over the years and
prospect the future directions of this area.
- Abstract(参考訳): 近年、自動運転はドライバーの負担を軽減し、運転の安全性を向上させる可能性について注目が集まっている。
現代の自動運転パイプラインでは、知覚システムは不可欠の構成要素であり、周囲の環境の状態を正確に推定し、予測と計画のための信頼できる観察を提供することを目的としている。
自動運転車の近くで重要な3Dオブジェクトの位置、サイズ、カテゴリをインテリジェントに予測する3Dオブジェクト検出は、認識システムの重要な部分である。
本稿では,自律運転における3次元物体検出技術の進歩を概観する。
まず,3次元物体検出の背景を紹介し,その課題について議論する。
第2に,lidarベース,カメラベース,マルチモーダル検出手法など,モデルとセンサ入力の観点から,3次元物体検出の進展を包括的に調査する。
また,各手法のカテゴリにおけるポテンシャルと課題を詳細に分析する。
さらに,運転システムにおける3次元物体検出の応用を体系的に検討した。
最後に,3次元物体検出手法の性能解析を行い,今後の動向を概観し,今後の方向性を展望する。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - A Comprehensive Review of 3D Object Detection in Autonomous Driving: Technological Advances and Future Directions [11.071271817366739]
3次元物体認識は、自律運転システムの開発において重要な要素となっている。
本稿では,カメラベース,LiDARベース,核融合検出技術を中心に,従来の3次元物体検出手法を概説する。
本稿では、時間知覚、占有グリッド、エンドツーエンド学習フレームワークなどの精度向上手法を含む今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-08-28T01:08:33Z) - CatFree3D: Category-agnostic 3D Object Detection with Diffusion [63.75470913278591]
本稿では,2次元検出と深度予測から3次元検出を分離するパイプラインを提案する。
また,3次元検出結果の正確な評価のために,正規化ハンガリー距離(NHD)指標も導入した。
論文 参考訳(メタデータ) (2024-08-22T22:05:57Z) - Vision-based 3D occupancy prediction in autonomous driving: a review and outlook [19.939380586314673]
本稿では,視覚に基づく3次元占有予測の背景を紹介し,その課題について論じる。
我々は3つの側面から視覚に基づく3D占有率予測の進捗状況を総合的に調査する。
代表的な研究動向を概説し,今後の展望を提案する。
論文 参考訳(メタデータ) (2024-05-04T07:39:25Z) - Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook [19.539295469044813]
本研究は,現実シナリオ下での知覚システム評価において,精度と遅延とともに頑健性の重要性を強調した。
我々の研究は、カメラのみ、LiDARのみ、マルチモーダルな3Dオブジェクト検出アルゴリズムを広範囲に調査し、精度、レイテンシ、堅牢性の間のトレードオフを徹底的に評価する。
これらのうち、多モード3D検出手法は優れた堅牢性を示し、新しい分類法を導入し、文献を改良して明瞭性を高める。
論文 参考訳(メタデータ) (2024-01-12T12:35:45Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3Dの人間のポーズ推定は、自動運転車が歩行者の微妙で複雑な振る舞いを知覚し理解できるようにする新しい技術である。
提案手法は,これらの補完信号を半教師付き方式で効率的に利用し,既存の手法よりも大きなマージンで性能を向上する。
具体的には、LiDAR点を画素整列マルチモーダル特徴に埋め込み、トランスフォーマーの精細化段階を経る。
論文 参考訳(メタデータ) (2022-12-15T11:15:14Z) - Survey and Systematization of 3D Object Detection Models and Methods [3.472931603805115]
2012-2021年の3次元物体検出における最近の進展を包括的に調査する。
基本概念を導入し、過去10年間に現れた幅広い異なるアプローチに焦点を当てます。
本稿では,これらの手法を今後の開発・評価・アプリケーション活動の指針として,実践的な枠組みで比較するシステム化を提案する。
論文 参考訳(メタデータ) (2022-01-23T20:06:07Z) - 3D Object Detection for Autonomous Driving: A Survey [14.772968858398043]
3次元物体検出は、そのような知覚システムの中核となる基礎となる。
既存の努力にもかかわらず、ポイントクラウド上の3Dオブジェクト検出はまだ初期段階にある。
近年, プロスとコンスを用いた最先端検出法が提案されている。
論文 参考訳(メタデータ) (2021-06-21T03:17:20Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。