論文の概要: Methodology for a Statistical Analysis of Influencing Factors on 3D Object Detection Performance
- arxiv url: http://arxiv.org/abs/2411.08482v2
- Date: Sat, 01 Feb 2025 02:05:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:06:15.386596
- Title: Methodology for a Statistical Analysis of Influencing Factors on 3D Object Detection Performance
- Title(参考訳): 3次元物体検出性能に及ぼす要因の統計的解析法
- Authors: Anton Kuznietsov, Dirk Schweickard, Steven Peters,
- Abstract要約: 自動走行では、オブジェクトの局所化と分類によって環境を知覚する上で、オブジェクト検出は必須のタスクである。
ほとんどのオブジェクト検出アルゴリズムは、優れた性能を得るためにディープラーニングに基づいている。
本稿では,LiDARとカメラを用いた3Dオブジェクト検出器の検知性能に及ぼす対象物や環境に関連する諸要因の影響を解析するための第一種手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In automated driving, object detection is an essential task to perceive the environment by localizing and classifying objects. Most object detection algorithms are based on deep learning for superior performance. However, their black-box nature makes it challenging to ensure safety. In this paper, we propose a first-of-its-kind methodology for analyzing the influence of various factors related to the objects or the environment on the detection performance of both LiDAR- and camera-based 3D object detectors. We conduct a statistical univariate analysis between each factor and the detection error on pedestrians to compare their strength of influence. In addition to univariate analysis, we employ a Random Forest (RF) model to predict the errors of specific detectors based on the provided meta-information. To interpret the predictions of the RF and assess the importance of individual features, we compute Shapley Values. By considering feature dependencies, the RF captures more complex relationships between meta-information and detection errors, allowing a more nuanced analysis of the factors contributing to the observed errors. Recognizing the factors that influence detection performance helps identify performance insufficiencies in the trained object detector and supports the safe development of object detection systems.
- Abstract(参考訳): 自動走行では、オブジェクトの局所化と分類によって環境を知覚する上で、オブジェクト検出は必須のタスクである。
ほとんどのオブジェクト検出アルゴリズムは、優れた性能を得るためにディープラーニングに基づいている。
しかし、そのブラックボックスの性質は安全性を確保することを困難にしている。
本稿では,LiDARとカメラを用いた3Dオブジェクト検出器の検知性能に及ぼす対象物や環境に関連する諸要因の影響を解析するための第一種手法を提案する。
歩行者における各要因と検出誤差の統計的一変量解析を行い,その影響の強さを比較した。
単変量解析に加えて,得られたメタ情報に基づいて特定検出器の誤差を予測するためにランダムフォレスト(RF)モデルを用いる。
RFの予測を解釈し,個々の特徴の重要性を評価するために,シェープ値を計算する。
機能依存を考慮することで、RFはメタ情報と検出エラーの間のより複雑な関係をキャプチャし、観察されたエラーに寄与する要因のより微妙な分析を可能にする。
物体検出性能に影響を与える要因を認識することは、訓練対象検出器の性能低下を識別し、物体検出システムの安全な開発を支援する。
関連論文リスト
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
本研究では,大気散乱と人間の視覚野機構に触発された新しい深層学習フレームワークを提案する。
本研究の目的は, 環境条件下での検知システムの精度と信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-02T04:03:07Z) - Fairness in Autonomous Driving: Towards Understanding Confounding Factors in Object Detection under Challenging Weather [7.736445799116692]
本研究では,最先端の変圧器を用いた物体検出装置において,歩行者の公正さを実証的に分析する。
古典的メトリクスに加えて,オブジェクト検出の様々な複雑な特性を測定するために,新しい確率ベースのメトリクスを導入する。
筆者らによる定量的分析では、現場の人口分布、天気の重大さ、歩行者のAV接近など、これまで見過ごされていた直感的な要因が、物体検出性能にどのように影響しているかを明らかにした。
論文 参考訳(メタデータ) (2024-05-31T22:35:10Z) - Integrity Monitoring of 3D Object Detection in Automated Driving Systems using Raw Activation Patterns and Spatial Filtering [12.384452095533396]
ディープニューラルネットワーク(DNN)モデルは、自動運転システム(ADS)における物体検出に広く利用されている。
しかし、そのようなモデルは、重大な安全性に影響を及ぼす可能性のあるエラーを起こしやすい。
このようなエラーを検知することを目的とした検査・自己評価モデルは、ADSの安全な配置において最重要となる。
論文 参考訳(メタデータ) (2024-05-13T10:03:03Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - A Meta-level Analysis of Online Anomaly Detectors [4.852567314334134]
ストリーミングデータにおける異常のリアルタイム検出が注目されている。
しかし、ストリーミングデータに対する異常検出の有効性と効率を比較するには、ほとんど注意が払われていない。
本稿では,異なるアルゴリズム群から抽出した主要なオンライン検出器の質的,総合的な概要について述べる。
論文 参考訳(メタデータ) (2022-09-13T11:28:15Z) - Comprehensive Analysis of the Object Detection Pipeline on UAVs [16.071349046409885]
まず、リモートセンシングアプリケーションにおける7つのパラメータ(量子化、圧縮、解像度、色モデル、画像歪み、ガンマ補正、追加チャネル)の影響を実験的に分析する。
すべてのパラメータが検出精度とデータスループットに等しく影響を与えるわけではなく、パラメータ間の適切な妥協により、軽量物体検出モデルの検出精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-01T09:30:01Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
本稿では,適応オブジェクト検出のための新しいエンド・ツー・エンドの非教師付き深部ドメイン適応モデルを提案する。
モデルはマルチラベル予測を利用して、各画像内の対象カテゴリ情報を明らかにする。
本稿では,オブジェクト検出を支援するための予測整合正則化機構を提案する。
論文 参考訳(メタデータ) (2020-03-29T04:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。