論文の概要: Methodology for an Analysis of Influencing Factors on 3D Object Detection Performance
- arxiv url: http://arxiv.org/abs/2411.08482v3
- Date: Mon, 30 Jun 2025 10:19:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 15:08:38.644202
- Title: Methodology for an Analysis of Influencing Factors on 3D Object Detection Performance
- Title(参考訳): 3次元物体検出性能に影響を及ぼす要因の解析手法
- Authors: Anton Kuznietsov, Dirk Schweickard, Steven Peters,
- Abstract要約: 自動走行では、物体検出は環境の知覚に不可欠である。
本稿では,LiDARおよびカメラを用いた3Dオブジェクト検出装置において,オブジェクトおよび環境関連要因がどのように影響するかを解析するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In automated driving, object detection is crucial for perceiving the environment. Although deep learning-based detectors offer high performance, their black-box nature complicates safety assurance. We propose a novel methodology to analyze how object- and environment-related factors affect LiDAR- and camera-based 3D object detectors. A statistical univariate analysis relates each factor to pedestrian detection errors. Additionally, a Random Forest (RF) model predicts errors from meta-information, with Shapley Values interpreting feature importance. By capturing feature dependencies, the RF enables a nuanced analysis of detection errors. Understanding these factors reveals detector performance gaps and supports safer object detection system development.
- Abstract(参考訳): 自動走行では、物体検出は環境の知覚に不可欠である。
深層学習に基づく検出器は高い性能を提供するが、ブラックボックスの性質は安全性の保証を複雑にする。
本稿では,LiDARおよびカメラを用いた3Dオブジェクト検出装置において,オブジェクトおよび環境関連要因がどのように影響するかを解析するための新しい手法を提案する。
統計的一変量解析は、各要因を歩行者検出誤差に関連付ける。
さらに、ランダムフォレスト(RF)モデルはメタ情報からエラーを予測する。
機能依存をキャプチャすることで、RFは検出エラーのニュアンス解析を可能にする。
これらの要因を理解することで、検出性能のギャップが明らかになり、より安全なオブジェクト検出システムの開発をサポートする。
関連論文リスト
- Uncertainty Representation in a SOTIF-Related Use Case with Dempster-Shafer Theory for LiDAR Sensor-Based Object Detection [0.0]
LiDARセンサによる物体検出の不確かさは、環境変動とセンサ性能の限界から生じる。
Dempster-Shafer Theory (DST) は、検出結果を表すための識別フレーム(FoD)を構築するために用いられる。
イェーガーの組合せ規則は、複数の情報源の矛盾する証拠を解決するために用いられる。
論文 参考訳(メタデータ) (2025-03-03T22:13:51Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
本研究では,大気散乱と人間の視覚野機構に触発された新しい深層学習フレームワークを提案する。
本研究の目的は, 環境条件下での検知システムの精度と信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-02T04:03:07Z) - Fairness in Autonomous Driving: Towards Understanding Confounding Factors in Object Detection under Challenging Weather [7.736445799116692]
本研究では,最先端の変圧器を用いた物体検出装置において,歩行者の公正さを実証的に分析する。
古典的メトリクスに加えて,オブジェクト検出の様々な複雑な特性を測定するために,新しい確率ベースのメトリクスを導入する。
筆者らによる定量的分析では、現場の人口分布、天気の重大さ、歩行者のAV接近など、これまで見過ごされていた直感的な要因が、物体検出性能にどのように影響しているかを明らかにした。
論文 参考訳(メタデータ) (2024-05-31T22:35:10Z) - Integrity Monitoring of 3D Object Detection in Automated Driving Systems using Raw Activation Patterns and Spatial Filtering [12.384452095533396]
ディープニューラルネットワーク(DNN)モデルは、自動運転システム(ADS)における物体検出に広く利用されている。
しかし、そのようなモデルは、重大な安全性に影響を及ぼす可能性のあるエラーを起こしやすい。
このようなエラーを検知することを目的とした検査・自己評価モデルは、ADSの安全な配置において最重要となる。
論文 参考訳(メタデータ) (2024-05-13T10:03:03Z) - Object criticality for safer navigation [1.565361244756411]
対象検出器が与えられた場合、その関連性に基づいてオブジェクトをフィルタリングし、関連するオブジェクトの欠落のリスクを低減し、危険な軌道の可能性を低減し、一般的に軌道の質を向上させる。
対象物検知器を与えられた場合、その関連性に基づいてオブジェクトをフィルタリングし、失う対象のリスクを低減し、危険な軌道の可能性を低減し、一般的に軌道の質を向上させる。
論文 参考訳(メタデータ) (2024-04-25T09:02:22Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - A Meta-level Analysis of Online Anomaly Detectors [4.852567314334134]
ストリーミングデータにおける異常のリアルタイム検出が注目されている。
しかし、ストリーミングデータに対する異常検出の有効性と効率を比較するには、ほとんど注意が払われていない。
本稿では,異なるアルゴリズム群から抽出した主要なオンライン検出器の質的,総合的な概要について述べる。
論文 参考訳(メタデータ) (2022-09-13T11:28:15Z) - A Quality Index Metric and Method for Online Self-Assessment of
Autonomous Vehicles Sensory Perception [164.93739293097605]
本稿では,検出品質指標(DQI)と呼ばれる新しい評価指標を提案し,カメラを用いた物体検出アルゴリズムの性能を評価する。
我々は,提案したDQI評価指標を予測するために,原画像画素とスーパーピクセルを入力として利用するスーパーピクセルベースのアテンションネットワーク(SPA-NET)を開発した。
論文 参考訳(メタデータ) (2022-03-04T22:16:50Z) - Evaluating Object (mis)Detection from a Safety and Reliability
Perspective: Discussion and Measures [1.8492669447784602]
本稿では,最も危険で運転決定に影響を及ぼす可能性が最も高い物体の正確な識別に報いる新しい物体検出手法を提案する。
我々は、最近の自律走行データセットnuScenesにモデルを適用し、9つの物体検出器を比較した。
その結果、いくつかの環境では、安全性と信頼性に重点を置いている場合、nuScenesランキングでベストに機能するオブジェクト検出器は好ましくないことが判明した。
論文 参考訳(メタデータ) (2022-03-04T09:31:20Z) - Comprehensive Analysis of the Object Detection Pipeline on UAVs [16.071349046409885]
まず、リモートセンシングアプリケーションにおける7つのパラメータ(量子化、圧縮、解像度、色モデル、画像歪み、ガンマ補正、追加チャネル)の影響を実験的に分析する。
すべてのパラメータが検出精度とデータスループットに等しく影響を与えるわけではなく、パラメータ間の適切な妥協により、軽量物体検出モデルの検出精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-01T09:30:01Z) - Comparative study of 3D object detection frameworks based on LiDAR data
and sensor fusion techniques [0.0]
知覚システムは、車両の環境をリアルタイムで正確に解釈する上で重要な役割を果たす。
ディープラーニング技術は、センサーから大量のデータを意味情報に変換する。
3Dオブジェクト検出法は、LiDARやステレオカメラなどのセンサーから追加のポーズデータを利用することで、オブジェクトのサイズと位置に関する情報を提供する。
論文 参考訳(メタデータ) (2022-02-05T09:34:58Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
本稿では,適応オブジェクト検出のための新しいエンド・ツー・エンドの非教師付き深部ドメイン適応モデルを提案する。
モデルはマルチラベル予測を利用して、各画像内の対象カテゴリ情報を明らかにする。
本稿では,オブジェクト検出を支援するための予測整合正則化機構を提案する。
論文 参考訳(メタデータ) (2020-03-29T04:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。