論文の概要: TimeLess: A Vision for the Next Generation of Software Development
- arxiv url: http://arxiv.org/abs/2411.08507v1
- Date: Wed, 13 Nov 2024 10:43:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:10.723399
- Title: TimeLess: A Vision for the Next Generation of Software Development
- Title(参考訳): TimeLess: 次世代ソフトウェア開発のビジョン
- Authors: Zeeshan Rasheed, Malik Abdul Sami, Jussi Rasku, Kai-Kristian Kemell, Zheying Zhang, Janne Harjamaki, Shahbaz Siddeeq, Sami Lahti, Tomas Herda, Mikko Nurminen, Niklas Lavesson, Jose Siqueira de Cerqueira, Toufique Hasan, Ayman Khan, Mahade Hasan, Mika Saari, Petri Rantanen, Jari Soini, Pekka Abrahamsson,
- Abstract要約: ミーティング中の即時動作を可能にすることにより,ソフトウェア開発プロセスの再構築を図ったTimeLessというシステムのビジョンを提示する。
目標は、ミーティングを計画的な議論から、生産的でアクション指向のセッションに移行することです。
我々は、人間の議論を捉え、リアルタイムで開発タスクを実行するために協力して働く複数のAIエージェントを採用する。
- 参考スコア(独自算出の注目度): 3.5832939443855247
- License:
- Abstract: Present-day software development faces three major challenges: complexity, time consumption, and high costs. Developing large software systems often requires battalions of teams and considerable time for meetings, which end without any action, resulting in unproductive cycles, delayed progress, and increased cost. What if, instead of large meetings with no immediate results, the software product is completed by the end of the meeting? In response, we present a vision for a system called TimeLess, designed to reshape the software development process by enabling immediate action during meetings. The goal is to shift meetings from planning discussions to productive, action-oriented sessions. This approach minimizes the time and effort required for development, allowing teams to focus on critical decision-making while AI agents execute development tasks based on the meeting discussions. We will employ multiple AI agents that work collaboratively to capture human discussions and execute development tasks in real time. This represents a step toward next-generation software development environments, where human expertise drives strategy and AI accelerates task execution.
- Abstract(参考訳): 現在のソフトウェア開発は、複雑さ、時間消費、コストの3つの大きな課題に直面しています。
大規模なソフトウェアシステムの開発には、多くのチームと会議に相当な時間を要することが多く、結果として非生産的なサイクルが生まれ、進捗が遅れ、コストが上昇する。
もしすぐに成果が得られない大規模なミーティングの代わりに、ソフトウェア製品がミーティングの終わりまでに完成するとしたらどうでしょう?
そこで本研究では,会議中の即時行動を可能にすることにより,ソフトウェア開発プロセスの再構築を目的としたTimeLessというシステムのビジョンを提案する。
目標は、ミーティングを計画的な議論から、生産的でアクション指向のセッションに移行することです。
このアプローチは、開発に必要な時間と労力を最小限にし、AIエージェントがミーティングの議論に基づいて開発タスクを実行する間、チームは重要な意思決定に集中できる。
我々は、人間の議論を捉え、リアルタイムで開発タスクを実行するために協力して働く複数のAIエージェントを採用する。
これは、人間の専門知識が戦略を推進し、AIがタスク実行を加速する、次世代ソフトウェア開発環境への一歩である。
関連論文リスト
- Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
並列処理とリアルタイムツール利用が可能な非同期AIエージェントを導入する。
私たちの重要な貢献は、エージェントの実行とプロンプトのためのイベント駆動有限状態マシンアーキテクチャです。
この研究は、流体とマルチタスクの相互作用が可能なAIエージェントを作成するための概念的なフレームワークと実践的なツールの両方を提示している。
論文 参考訳(メタデータ) (2024-10-28T23:57:19Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENTは、異種マルチロボットシステムの協調のための新しいLCMベースのタスク計画フレームワークである。
提案-実行-フィードバック-調整機構は,個々のロボットに対して動作を分解・割り当てするように設計されている。
実験の結果,我々の研究は,成功率と実行効率の面で,従来の手法をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-23T15:53:41Z) - Future of Artificial Intelligence in Agile Software Development [0.0]
AIは、LLM、GenAIモデル、AIエージェントを活用することで、ソフトウェア開発マネージャ、ソフトウェアテスタ、その他のチームメンバーを支援することができる。
AIは効率を高め、プロジェクト管理チームが直面するリスクを軽減する可能性がある。
論文 参考訳(メタデータ) (2024-08-01T16:49:50Z) - Rethinking Software Engineering in the Foundation Model Era: From Task-Driven AI Copilots to Goal-Driven AI Pair Programmers [30.996760992473064]
我々は,人間開発者と協調する目標駆動型AI駆動ペアプログラマへのパラダイムシフトを提案する。
目標駆動、人間パートナー、SE認識、自己学習のAIペアプログラマを想定する。
論文 参考訳(メタデータ) (2024-04-16T02:10:20Z) - Synergising Human-like Responses and Machine Intelligence for Planning in Disaster Response [10.294618771570985]
デュアルプロセス理論(DPT)にインスパイアされた注意に基づく認知アーキテクチャを提案する。
このフレームワークは、高速だが(人間のような)応答と、遅いが最適化されたマシンインテリジェンスの計画能力を統合する。
論文 参考訳(メタデータ) (2024-04-15T15:47:08Z) - Anticipate & Collab: Data-driven Task Anticipation and Knowledge-driven Planning for Human-robot Collaboration [13.631341660350028]
日々の生活活動において人間を支援するエージェントは、今後の課題を予測してより効果的に協力することができる。
データ駆動型手法はタスク予測、計画、関連する問題の最先端を表現しているが、これらの手法は資源不足と不透明である。
本稿では,人間とロボットのコラボレーションに向けたこれまでの取り組みを大幅に拡張するフレームワークであるDaTAPlanについて述べる。
論文 参考訳(メタデータ) (2024-04-04T16:52:48Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - Automated Task-Time Interventions to Improve Teamwork using Imitation
Learning [5.423490734916741]
私たちは、チームメンバー間の調整を改善するための自動化された介入アプローチTICを提示します。
我々はまず、過去のタスク実行データからチームの振る舞いの生成モデルを学ぶ。
次に、学習した生成モデルとチームのタスク目標(共有報酬)を使用して、実行時の介入をアルゴリズム的に生成する。
論文 参考訳(メタデータ) (2023-03-01T11:09:06Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
本稿では、ミッション自律のためのソフトウェアフレームワークに組み込まれた、オンボードスケジューラを提案する。
スケジューラは線形整数プログラミングに基づいており、ブランチ・アンド・カット・ソルバの使用に依存している。
この技術は地球観測のシナリオでテストされており、その性能を最先端のスケジューリング技術と比較している。
論文 参考訳(メタデータ) (2022-05-04T12:00:49Z) - Lifelong Learning Metrics [63.8376359764052]
DARPA Lifelong Learning Machines (L2M) プログラムは、人工知能(AI)システムの進歩を目指している。
本論文は、生涯学習シナリオを実行するエージェントのパフォーマンスの構築と特徴付けのためのフォーマリズムを概説する。
論文 参考訳(メタデータ) (2022-01-20T16:29:14Z) - iCORPP: Interleaved Commonsense Reasoning and Probabilistic Planning on
Robots [46.13039152809055]
我々はiCORPPと呼ばれる新しいアルゴリズムを提案し、現在の世界状態を同時に推定し、世界ダイナミクスの推論を行い、タスク指向のコントローラを構築する。
結果は、競合するベースラインと比較して、スケーラビリティ、効率、適応性が大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2020-04-18T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。