論文の概要: TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks
- arxiv url: http://arxiv.org/abs/2412.14161v1
- Date: Wed, 18 Dec 2024 18:55:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:24:39.546242
- Title: TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks
- Title(参考訳): TheAgentCompany: 連続現実課題におけるLLMエージェントのベンチマーク
- Authors: Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang, Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su, Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, Graham Neubig,
- Abstract要約: 私たちは小さなソフトウェア企業環境を模倣したデータによる自己完結型環境を構築します。
最も競争力のあるエージェントでは、タスクの24%が自律的に完了できます。
これは、LMエージェントによるタスク自動化に関するニュアンスな絵を描く。
- 参考スコア(独自算出の注目度): 52.46737975742287
- License:
- Abstract: We interact with computers on an everyday basis, be it in everyday life or work, and many aspects of work can be done entirely with access to a computer and the Internet. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. But how performant are AI agents at helping to accelerate or even autonomously perform work-related tasks? The answer to this question has important implications for both industry looking to adopt AI into their workflows, and for economic policy to understand the effects that adoption of AI may have on the labor market. To measure the progress of these LLM agents' performance on performing real-world professional tasks, in this paper, we introduce TheAgentCompany, an extensible benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker: by browsing the Web, writing code, running programs, and communicating with other coworkers. We build a self-contained environment with internal web sites and data that mimics a small software company environment, and create a variety of tasks that may be performed by workers in such a company. We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that with the most competitive agent, 24% of the tasks can be completed autonomously. This paints a nuanced picture on task automation with LM agents -- in a setting simulating a real workplace, a good portion of simpler tasks could be solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current systems.
- Abstract(参考訳): 私たちは日々の生活や仕事でコンピュータと対話し、仕事の多くの側面はコンピュータやインターネットへのアクセスで完全にできるのです。
同時に、大きな言語モデル(LLM)の改善により、周辺環境の変化と相互作用し、影響を及ぼすAIエージェントの急速な開発も行われている。
しかし、AIエージェントは、仕事に関連したタスクを加速したり、自律的に実行するのを助けるのに、どの程度の能力があるのだろうか?
この質問に対する回答は、AIをワークフローに導入しようとしている業界と、AIの採用が労働市場にもたらす影響を理解するための経済政策の両方に重要な意味を持っている。
本稿では、これらのLLMエージェントの実際の業務遂行におけるパフォーマンスの進捗を評価するために、Web閲覧、コード記述、プログラムの実行、他の同僚とのコミュニケーションなど、デジタルワーカーと同様の方法で世界と対話するAIエージェントを評価するための拡張可能なベンチマークであるTheAgentCompanyを紹介する。
我々は、小さなソフトウェア企業環境を模倣する内部Webサイトとデータを備えた自己完結型環境を構築し、そのような企業の労働者が行う可能性のある様々なタスクを作成します。
私たちは、クローズドAPIベースとオープンウェイト言語モデル(LM)の両方でベースラインエージェントをテストし、最も競争力のあるエージェントでは、タスクの24%を自律的に完了させることができることに気付きました。
これは、LMエージェントによるタスク自動化に関する微妙な絵を描く -- 実際の職場をシミュレートした設定では、単純なタスクのかなりの部分が自律的に解決できるが、より困難なロングホライゾンタスクは、現在のシステムの範囲を超えている。
関連論文リスト
- AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としており、人間の作業量を削減し、顧客への影響を最小限にする。
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、エンドツーエンドとマルチタスクの自動化を可能にすることで、AIOpsに革命をもたらしている。
マイクロサービスクラウド環境をデプロイし、障害を注入し、ワークロードを生成し、テレメトリデータをエクスポートするフレームワークであるAIOPSLABを紹介します。
論文 参考訳(メタデータ) (2025-01-12T04:17:39Z) - Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
大規模言語モデル(LLM)は、自然言語コマンドを解釈するために、その膨大な理解を活用できなければならない。
しかし、これらのモデルは幻覚に悩まされ、安全上の問題やタスクからの逸脱を引き起こす可能性がある。
本研究では、一つの独立したAIエージェントに対して複数のコラボレーティブAIシステムがテストされ、他のドメインの成功が人間とロボットのインタラクション性能の改善につながるかどうかを判定した。
論文 参考訳(メタデータ) (2024-11-23T02:47:12Z) - Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
米国の雇用の3分の1はAIに強く依存している。
この露出は、2019年から2023年までの雇用と賃金の伸びと正の相関関係にある。
論文 参考訳(メタデータ) (2024-07-27T08:14:18Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - Your Co-Workers Matter: Evaluating Collaborative Capabilities of Language Models in Blocks World [13.005764902339523]
2つのエージェントがそれぞれ独自の目標とスキルを持ち、ターゲット構造を一緒に構築するブロックワールド環境を設計する。
目標を達成するために、彼らは世界で行動し、自然言語でコミュニケーションすることができる。
パートナーの状態をモデル化し、実行エラーを特定し、修正するための中間的推論ステップを含む、チェーンオブ思想のプロンプトを採用しています。
論文 参考訳(メタデータ) (2024-03-30T04:48:38Z) - WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks? [83.19032025950986]
本稿では,Webブラウザを介してソフトウェアと対話する大規模言語モデルベースエージェントについて検討する。
WorkArenaは、広く使用されているServiceNowプラットフォームに基づく33のタスクのベンチマークである。
BrowserGymは、そのようなエージェントの設計と評価のための環境である。
論文 参考訳(メタデータ) (2024-03-12T14:58:45Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
エージェントAI(Agent AI)とは、視覚刺激や言語入力、その他の環境データを知覚できる対話型システムである。
我々は,バーチャルリアリティやシミュレートされたシーンを容易に作成し,仮想環境内に具体化されたエージェントと対話できる未来を構想する。
論文 参考訳(メタデータ) (2024-01-07T19:11:18Z) - WebArena: A Realistic Web Environment for Building Autonomous Agents [92.3291458543633]
我々は、非常に現実的で再現可能な言語誘導エージェントのための環境を構築する。
我々は,Web上でタスクを実行するエージェントに着目し,4つの共通ドメインから完全に機能するWebサイトを持つ環境を構築する。
タスク完了の関数的正しさを評価することに焦点を当てたベンチマークタスクのセットをリリースする。
論文 参考訳(メタデータ) (2023-07-25T22:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。