Slender Object Scene Segmentation in Remote Sensing Image Based on Learnable Morphological Skeleton with Segment Anything Model
- URL: http://arxiv.org/abs/2411.08592v1
- Date: Wed, 13 Nov 2024 13:19:51 GMT
- Title: Slender Object Scene Segmentation in Remote Sensing Image Based on Learnable Morphological Skeleton with Segment Anything Model
- Authors: Jun Xie, Wenxiao Li, Faqiang Wang, Liqiang Zhang, Zhengyang Hou, Jun Liu,
- Abstract summary: We propose a new approach that integrates learnable morphological skeleton prior into deep neural networks.
Experimental results on remote sensing datasets, including buildings and roads, demonstrate that our method outperforms the original Segment Anything Model.
- Score: 23.419029471215325
- License:
- Abstract: Morphological methods play a crucial role in remote sensing image processing, due to their ability to capture and preserve small structural details. However, most of the existing deep learning models for semantic segmentation are based on the encoder-decoder architecture including U-net and Segment Anything Model (SAM), where the downsampling process tends to discard fine details. In this paper, we propose a new approach that integrates learnable morphological skeleton prior into deep neural networks using the variational method. To address the difficulty in backpropagation in neural networks caused by the non-differentiability presented in classical morphological operations, we provide a smooth representation of the morphological skeleton and design a variational segmentation model integrating morphological skeleton prior by employing operator splitting and dual methods. Then, we integrate this model into the network architecture of SAM, which is achieved by adding a token to mask decoder and modifying the final sigmoid layer, ensuring the final segmentation results preserve the skeleton structure as much as possible. Experimental results on remote sensing datasets, including buildings and roads, demonstrate that our method outperforms the original SAM on slender object segmentation and exhibits better generalization capability.
Related papers
- Fitting Skeletal Models via Graph-based Learning [3.059114987144684]
We propose a new skeletonization method which leverages graph convolutional networks to produce skeletal representations (s-reps) from dense segmentation masks.
The method is evaluated on both synthetic data and real hippocampus segmentations, achieving promising results and fast inference.
arXiv Detail & Related papers (2024-09-09T03:50:41Z) - SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence
Pre-training [110.55093254677638]
We propose an efficient skeleton sequence learning framework, named Skeleton Sequence Learning (SSL)
In this paper, we build an asymmetric graph-based encoder-decoder pre-training architecture named SkeletonMAE.
Our SSL generalizes well across different datasets and outperforms the state-of-the-art self-supervised skeleton-based action recognition methods.
arXiv Detail & Related papers (2023-07-17T13:33:11Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
Deep learning (DL) methods have been proposed and widely used for image segmentation.
DL methods usually require a large amount of manually segmented data as training data and suffer from poor interpretability.
In this paper, we replace the hand-crafted regularity term in the MS model with a data adaptive generalized learnable regularity term.
arXiv Detail & Related papers (2023-06-25T02:34:34Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
We present an end-to-end weakly-supervised framework to automatically detect and segment NeuN stained neuronal cells on histological images.
We integrate the state-of-the-art network, EfficientNet, into our U-Net-like architecture.
arXiv Detail & Related papers (2022-02-17T14:35:45Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Unsupervised Learning Consensus Model for Dynamic Texture Videos
Segmentation [12.462608802359936]
We present an effective unsupervised learning consensus model for the segmentation of dynamic texture (ULCM)
In the proposed model, the set of values of the requantized local binary patterns (LBP) histogram around the pixel to be classified are used as features.
Experiments conducted on the challenging SynthDB dataset show that ULCM is significantly faster, easier to code, simple and has limited parameters.
arXiv Detail & Related papers (2020-06-29T16:40:59Z) - Skeleton-Aware Networks for Deep Motion Retargeting [83.65593033474384]
We introduce a novel deep learning framework for data-driven motion between skeletons.
Our approach learns how to retarget without requiring any explicit pairing between the motions in the training set.
arXiv Detail & Related papers (2020-05-12T12:51:40Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z) - Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks [2.454342521577328]
We present a (two-stage) approach built around convolutional neural networks (CNNs)
In the first stage, our approach uses a Mask RCNN model to identify superquadric-like structures in depth scenes.
We are able to describe complex structures with a small number of interpretable parameters.
arXiv Detail & Related papers (2020-01-28T18:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.