Zero-shot capability of SAM-family models for bone segmentation in CT scans
- URL: http://arxiv.org/abs/2411.08629v1
- Date: Wed, 13 Nov 2024 14:16:22 GMT
- Title: Zero-shot capability of SAM-family models for bone segmentation in CT scans
- Authors: Caroline Magg, Hoel Kervadec, Clara I. Sánchez,
- Abstract summary: We use non-iterative, optimal'' prompting strategies to test the zero-shot capability of SAM-family models for bone CT segmentation.
Our results show that the best settings depend on the model type and size, dataset characteristics and objective to optimize.
- Score: 1.6018376109260821
- License:
- Abstract: The Segment Anything Model (SAM) and similar models build a family of promptable foundation models (FMs) for image and video segmentation. The object of interest is identified using prompts, such as bounding boxes or points. With these FMs becoming part of medical image segmentation, extensive evaluation studies are required to assess their strengths and weaknesses in clinical setting. Since the performance is highly dependent on the chosen prompting strategy, it is important to investigate different prompting techniques to define optimal guidelines that ensure effective use in medical image segmentation. Currently, no dedicated evaluation studies exist specifically for bone segmentation in CT scans, leaving a gap in understanding the performance for this task. Thus, we use non-iterative, ``optimal'' prompting strategies composed of bounding box, points and combinations to test the zero-shot capability of SAM-family models for bone CT segmentation on three different skeletal regions. Our results show that the best settings depend on the model type and size, dataset characteristics and objective to optimize. Overall, SAM and SAM2 prompted with a bounding box in combination with the center point for all the components of an object yield the best results across all tested settings. As the results depend on multiple factors, we provide a guideline for informed decision-making in 2D prompting with non-interactive, ''optimal'' prompts.
Related papers
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
We introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans.
Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss.
We also investigate using zero-shot segmentation labels within a weakly supervised paradigm to enhance segmentation quality further.
arXiv Detail & Related papers (2024-09-28T23:10:37Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Segment Anything Model-guided Collaborative Learning Network for
Scribble-supervised Polyp Segmentation [45.15517909664628]
Polyp segmentation plays a vital role in accurately locating polyps at an early stage.
pixel-wise annotation for polyp images by physicians during the diagnosis is both time-consuming and expensive.
We propose a novel SAM-guided Collaborative Learning Network (SAM-CLNet) for scribble-supervised polyp segmentation.
arXiv Detail & Related papers (2023-12-01T03:07:13Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
We propose I-MedSAM, which leverages the benefits of both continuous representations and SAM to obtain better cross-domain ability and accurate boundary delineation.
Our proposed method with only 1.6M trainable parameters outperforms existing methods including discrete and implicit methods.
arXiv Detail & Related papers (2023-11-28T00:43:52Z) - nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance [12.169801149021566]
The Segment Anything Model (SAM) has emerged as a versatile tool for image segmentation without specific domain training.
Traditional models like nnUNet perform automatic segmentation during inference but need extensive domain-specific training.
We propose nnSAM, integrating SAM's robust feature extraction with nnUNet's automatic configuration to enhance segmentation accuracy on small datasets.
arXiv Detail & Related papers (2023-09-29T04:26:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model [1.1221592576472588]
We evaluate the zero-shot capabilities of the Segment Anything Model for medical image segmentation.
We show that SAM generalizes well to CT data, making it a potential catalyst for the advancement of semi-automatic segmentation tools.
arXiv Detail & Related papers (2023-04-10T18:20:29Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.