Accelerating Quasi-Static Time Series Simulations with Foundation Models
- URL: http://arxiv.org/abs/2411.08652v1
- Date: Wed, 13 Nov 2024 14:42:32 GMT
- Title: Accelerating Quasi-Static Time Series Simulations with Foundation Models
- Authors: Alban Puech, François Mirallès, Jonas Weiss, Vincent Mai, Alexandre Blondin Massé, Martin de Montigny, Thomas Brunschwiler, Hendrik F. Hamann,
- Abstract summary: We envision how recently introduced grid foundation models could improve the economic viability of neural power flow solvers.
We call for collaboration between the AI and power grid communities to develop and open-source these models.
- Score: 36.7183558293052
- License:
- Abstract: Quasi-static time series (QSTS) simulations have great potential for evaluating the grid's ability to accommodate the large-scale integration of distributed energy resources. However, as grids expand and operate closer to their limits, iterative power flow solvers, central to QSTS simulations, become computationally prohibitive and face increasing convergence issues. Neural power flow solvers provide a promising alternative, speeding up power flow computations by 3 to 4 orders of magnitude, though they are costly to train. In this paper, we envision how recently introduced grid foundation models could improve the economic viability of neural power flow solvers. Conceptually, these models amortize training costs by serving as a foundation for a range of grid operation and planning tasks beyond power flow solving, with only minimal fine-tuning required. We call for collaboration between the AI and power grid communities to develop and open-source these models, enabling all operators, even those with limited resources, to benefit from AI without building solutions from scratch.
Related papers
- Optimal Power Grid Operations with Foundation Models [0.0]
We propose the use of AI Foundation Models (FMs) and advances in Graph Neural Networks to efficiently exploit poorly available grid data for different downstream tasks.
For capturing the grid's underlying physics, we believe that building a self-supervised model learning the power flow dynamics is a critical first step towards developing an FM for the power grid.
arXiv Detail & Related papers (2024-09-03T09:06:13Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - QCQP-Net: Reliably Learning Feasible Alternating Current Optimal Power
Flow Solutions Under Constraints [4.1920378271058425]
We propose an innovated computational learning ACOPF, where the input is mapped to the ACOPF network in a computationally efficient manner.
We show through simulations that our proposed method achieves superior feasibility rate and cost in situations where the existing-based approaches fail.
arXiv Detail & Related papers (2024-01-11T20:17:44Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
Electric vehicles (EVs) might stress distribution networks significantly, leaving their performance degraded and jeopardized stability.
Modern power grids require coordinated or smart'' charging strategies capable of optimizing EV charging scheduling in a scalable and efficient fashion.
We formulate a time-coupled binary optimization problem that maximizes EV users' total welfare gain while accounting for the network's available power capacity and stations' occupancy limits.
arXiv Detail & Related papers (2023-05-18T14:03:47Z) - Real-time scheduling of renewable power systems through planning-based
reinforcement learning [13.65517429683729]
renewable energy sources have posed significant challenges to traditional power scheduling.
New developments in reinforcement learning have demonstrated the potential to solve this problem.
We are the first to propose a systematic solution based on the state-of-the-art reinforcement learning algorithm and the real power grid environment.
arXiv Detail & Related papers (2023-03-09T12:19:20Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
The Gaussian Process (GP) based Chance-Constrained Optimal Flow (CC-OPF) is an open-source Python code for economic dispatch (ED) problem in power grids.
The developed tool presents a novel data-driven approach based on the CC-OP model for solving the large regression problem with a trade-off between complexity and accuracy.
arXiv Detail & Related papers (2023-02-16T17:59:06Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated edge learning (FEEL) is a promising distributed learning technique for next-generation wireless networks.
FEEL might significantly shorten energy-constrained participating devices' lifetime due to the power consumed during the model training round.
This paper proposes a novel approach that endeavors to minimize computation and communication energy consumption during FEEL rounds.
arXiv Detail & Related papers (2021-03-30T13:34:40Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.