UniMat: Unifying Materials Embeddings through Multi-modal Learning
- URL: http://arxiv.org/abs/2411.08664v1
- Date: Wed, 13 Nov 2024 14:55:08 GMT
- Title: UniMat: Unifying Materials Embeddings through Multi-modal Learning
- Authors: Janghoon Ock, Joseph Montoya, Daniel Schweigert, Linda Hung, Santosh K. Suram, Weike Ye,
- Abstract summary: We evaluate techniques in multi-modal learning (alignment and fusion) in unifying some of the most important modalities in materials science.
We show that structure graph modality can be enhanced by aligning with XRD patterns.
We also show that aligning and fusing more experimentally accessible data formats, such as XRD patterns and compositions, can create more robust joint embeddings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Materials science datasets are inherently heterogeneous and are available in different modalities such as characterization spectra, atomic structures, microscopic images, and text-based synthesis conditions. The advancements in multi-modal learning, particularly in vision and language models, have opened new avenues for integrating data in different forms. In this work, we evaluate common techniques in multi-modal learning (alignment and fusion) in unifying some of the most important modalities in materials science: atomic structure, X-ray diffraction patterns (XRD), and composition. We show that structure graph modality can be enhanced by aligning with XRD patterns. Additionally, we show that aligning and fusing more experimentally accessible data formats, such as XRD patterns and compositions, can create more robust joint embeddings than individual modalities across various tasks. This lays the groundwork for future studies aiming to exploit the full potential of multi-modal data in materials science, facilitating more informed decision-making in materials design and discovery.
Related papers
- XxaCT-NN: Structure Agnostic Multimodal Learning for Materials Science [0.27185251060695437]
We propose a scalable framework that learns directly from elemental composition and X-ray diffraction (XRD)<n>Our architecture integrates modality-specific encoders with a cross-attention fusion module and is trained on the 5-million-sample Alexandria dataset.<n>Our results establish a path toward structure-free, experimentally grounded foundation models for materials science.
arXiv Detail & Related papers (2025-06-27T21:45:56Z) - PolyMicros: Bootstrapping a Foundation Model for Polycrystalline Material Structure [2.030250820529959]
We introduce a novel machine learning approach for learning from hyper-sparse, complex spatial data in scientific domains.<n>Our core contribution is a physics-driven data augmentation scheme that leverages an ensemble of local generative models.<n>We utilize this framework to construct PolyMicros, the first Foundation Model for polycrystalline materials.
arXiv Detail & Related papers (2025-05-22T16:12:20Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Multimodal Learning for Materials [7.167520424757711]
We introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials.
We demonstrate our framework's potential using data from the Materials Project database on multiple axes.
arXiv Detail & Related papers (2023-11-30T18:35:29Z) - Compositional Representation of Polymorphic Crystalline Materials [56.80318252233511]
We introduce PCRL, a novel approach that employs probabilistic modeling of composition to capture the diverse polymorphs from available structural information.
Extensive evaluations on sixteen datasets demonstrate the effectiveness of PCRL in learning compositional representation.
arXiv Detail & Related papers (2023-11-17T20:34:28Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties [4.495968252019426]
This paper introduces a novel approach to multimodal machine learning in materials science via composition-structure bimodal learning.
The proposed COmposition-Structure Bimodal Network (COSNet) is designed to enhance learning and predictions of experimentally measured materials properties that have incomplete structure information.
arXiv Detail & Related papers (2023-08-04T02:04:52Z) - Data-Driven Design for Metamaterials and Multiscale Systems: A Review [15.736695579155047]
Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature.
A compelling paradigm that could bring the full potential of metamaterials to fruition is emerging: data-driven design.
We organize existing research into data-driven modules, encompassing data acquisition, machine learning-based unit cell design, and data-driven multiscale optimization.
arXiv Detail & Related papers (2023-07-01T22:36:40Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - Geometric multimodal representation learning [13.159512679346687]
Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge.
We put forward an algorithmic blueprint for multimodal graph learning based on this categorization.
This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
arXiv Detail & Related papers (2022-09-07T16:59:03Z) - Multimodal Image Synthesis and Editing: The Generative AI Era [131.9569600472503]
multimodal image synthesis and editing has become a hot research topic in recent years.
We comprehensively contextualize the advance of the recent multimodal image synthesis and editing.
We describe benchmark datasets and evaluation metrics as well as corresponding experimental results.
arXiv Detail & Related papers (2021-12-27T10:00:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.