Data-Driven Design for Metamaterials and Multiscale Systems: A Review
- URL: http://arxiv.org/abs/2307.05506v1
- Date: Sat, 1 Jul 2023 22:36:40 GMT
- Title: Data-Driven Design for Metamaterials and Multiscale Systems: A Review
- Authors: Doksoo Lee, Wei Wayne Chen, Liwei Wang, Yu-Chin Chan, Wei Chen
- Abstract summary: Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature.
A compelling paradigm that could bring the full potential of metamaterials to fruition is emerging: data-driven design.
We organize existing research into data-driven modules, encompassing data acquisition, machine learning-based unit cell design, and data-driven multiscale optimization.
- Score: 15.736695579155047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metamaterials are artificial materials designed to exhibit effective material
parameters that go beyond those found in nature. Composed of unit cells with
rich designability that are assembled into multiscale systems, they hold great
promise for realizing next-generation devices with exceptional, often exotic,
functionalities. However, the vast design space and intricate
structure-property relationships pose significant challenges in their design. A
compelling paradigm that could bring the full potential of metamaterials to
fruition is emerging: data-driven design. In this review, we provide a holistic
overview of this rapidly evolving field, emphasizing the general methodology
instead of specific domains and deployment contexts. We organize existing
research into data-driven modules, encompassing data acquisition, machine
learning-based unit cell design, and data-driven multiscale optimization. We
further categorize the approaches within each module based on shared
principles, analyze and compare strengths and applicability, explore
connections between different modules, and identify open research questions and
opportunities.
Related papers
- BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM)
Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys.
arXiv Detail & Related papers (2024-07-13T22:46:02Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Modular Deep Learning [120.36599591042908]
Transfer learning has recently become the dominant paradigm of machine learning.
It remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference.
Modular deep learning has emerged as a promising solution to these challenges.
arXiv Detail & Related papers (2023-02-22T18:11:25Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
We review advances in AI-driven materials-by-design and their applications to energetic materials.
We evaluate methods in the literature in terms of their capacity to learn from a small/limited number of data.
We suggest a few promising future research directions for EM materials-by-design, such as meta-learning, active learning, Bayesian learning, and semi-/weakly-supervised learning.
arXiv Detail & Related papers (2022-11-15T14:41:11Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - T-METASET: Task-Aware Generation of Metamaterial Datasets by
Diversity-Based Active Learning [14.668178146934588]
We propose t-METASET: an intelligent data acquisition framework for task-aware dataset generation.
We validate the proposed framework in three hypothetical deployment scenarios, which encompass general use, task-aware use, and tailorable use.
arXiv Detail & Related papers (2022-02-21T22:46:49Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z) - METASET: Exploring Shape and Property Spaces for Data-Driven
Metamaterials Design [20.272835126269374]
We show that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning.
Our flexible method can distill unique subsets regardless of the metric employed.
Our diverse subsets are provided publicly for use by any designer.
arXiv Detail & Related papers (2020-06-01T03:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.