Quantum Gas Microscopy of Fermions in the Continuum
- URL: http://arxiv.org/abs/2411.08776v1
- Date: Wed, 13 Nov 2024 17:00:02 GMT
- Title: Quantum Gas Microscopy of Fermions in the Continuum
- Authors: Tim de Jongh, Joris Verstraten, Maxime Dixmerias, Cyprien Daix, Bruno Peaudecerf, Tarik Yefsah,
- Abstract summary: Microscopically probing quantum many-body systems by resolving constituent particles is essential for understanding quantum matter.
Atom-based quantum simulators offer a unique platform that enables the imaging of each particle in a many-body system.
Here, we introduce a novel method for imaging atomic quantum many-body systems in the continuum, allowing for in situ resolution of every particle.
- Score: 0.0
- License:
- Abstract: Microscopically probing quantum many-body systems by resolving their constituent particles is essential for understanding quantum matter. In most physical systems, distinguishing individual particles, such as electrons in solids, or neutrons and quarks in neutron stars, is impossible. Atom-based quantum simulators offer a unique platform that enables the imaging of each particle in a many-body system. Until now, however, this capability has been limited to quantum systems in discretized space such as optical lattices and tweezers, where spatial degrees of freedom are quantized. Here, we introduce a novel method for imaging atomic quantum many-body systems in the continuum, allowing for in situ resolution of every particle. We demonstrate the capabilities of our approach on a two-dimensional atomic Fermi gas. We probe the density correlation functions, resolving their full spatial functional form, and reveal the shape of the Fermi hole arising from Pauli exclusion as a function of temperature. Our method opens the door to probing strongly-correlated quantum gases in the continuum with unprecedented spatial resolution, providing in situ access to spatially resolved correlation functions of arbitrarily high order across the entire system.
Related papers
- Reentrant phase behavior in systems with density-induced tunneling [0.0]
We study a quantum bosonic two-dimensional many body system with extended interactions between particles.
Analytical calculations show that the system can be driven out of its coherent state, which is prevalent among commonly used setups.
The breakdown of quantum coherence is inevitable, but can be misinterpreted if one assumes improper coupling between the constituents of the many particle system.
arXiv Detail & Related papers (2023-08-31T03:24:28Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Commensurate and incommensurate 1D interacting quantum systems [0.0]
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes.
Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms.
arXiv Detail & Related papers (2023-05-05T18:49:43Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Taming Atomic Defects for Quantum Functions [0.0]
Single atoms provide an ideal system for utilizing fundamental quantum functions.
The counterpart of single atoms -- the single defects -- may be as good as atom-based quantum systems if not better.
We introduce some of our recent work on precisely controlled creation and manipulation of individual defects with a scanning tunneling microscope.
arXiv Detail & Related papers (2022-09-22T14:47:20Z) - Simulating long-range coherence of atoms and photons in quantum
computers [0.0]
Lasers and Bose-Einstein condensates (BECs) exhibit macroscopic quantum coherence in seemingly unrelated ways.
We present a unified framework to simulate lasers and BECs states in gate-based quantum computers.
arXiv Detail & Related papers (2022-06-16T18:00:03Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Multipartite Entanglement of Billions of Motional Atoms Heralded by
Single Photon [10.108483166556287]
We create multipartite entanglement of billions of motional atoms in a quantum memory at room temperature.
Results verify the existence of genuine multipartite entanglement among billions of motional atoms at ambient condition.
arXiv Detail & Related papers (2020-02-26T19:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.