Measuring pair correlations in Bose and Fermi gases via atom-resolved microscopy
- URL: http://arxiv.org/abs/2411.08780v1
- Date: Wed, 13 Nov 2024 17:05:44 GMT
- Title: Measuring pair correlations in Bose and Fermi gases via atom-resolved microscopy
- Authors: Ruixiao Yao, Sungjae Chi, Mingxuan Wang, Richard J. Fletcher, Martin Zwierlein,
- Abstract summary: We demonstrate atom-resolved detection of itinerant bosonic $23$Na and fermionic $6$Li quantum gases.
In contrast to prior work on lattice-trapped gases, here we realize microscopy of quantum gases in the continuum.
Our technique opens the door to the atom-resolved study of strongly correlated quantum gases of bosons, fermions, and their mixtures.
- Score: 28.441455845282068
- License:
- Abstract: We demonstrate atom-resolved detection of itinerant bosonic $^{23}$Na and fermionic $^6$Li quantum gases, enabling the direct in situ measurement of interparticle correlations. In contrast to prior work on lattice-trapped gases, here we realize microscopy of quantum gases in the continuum. We reveal Bose-Einstein condensation with single-atom resolution, measure the enhancement of two-particle $g^{(2)}$ correlations of thermal bosons, and observe the suppression of $g^{(2)}$ for fermions; the Fermi or exchange hole. For strongly interacting Fermi gases confined to two dimensions, we directly observe non-local fermion pairs in the BEC-BCS crossover. We obtain the pairing gap, the pair size, and the short-range contact directly from the pair correlations. In situ thermometry is enabled via the fluctuation-dissipation theorem. Our technique opens the door to the atom-resolved study of strongly correlated quantum gases of bosons, fermions, and their mixtures.
Related papers
- Probing pair correlations in Fermi gases with Ramsey-Bragg interferometry [41.94295877935867]
We propose an interferometric method to probe pair correlations in a gas of spin-1/2 fermions.
The method consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest and a state with a large recoil velocity.
The off-diagonal long-range order is directly reflected in the behavior of the interferometric signal for long interrogation times.
arXiv Detail & Related papers (2023-12-21T15:46:29Z) - Two-fermion lattice Hamiltonian with first and second
nearest-neighboring-site interactions [68.8204255655161]
We study the Schroedinger operators H_lambdamu(K), with K in T, the fixed quasi-momentum of the particles pair.
We establish a sharp lower bound for the number of isolated eigenvalues of H_lambdamu(K) in each connected component.
arXiv Detail & Related papers (2023-03-18T20:08:56Z) - Quantum Monte Carlo study of the role of p-wave interactions in
ultracold repulsive Fermi gases [0.0]
We investigate the ground-state properties of single-component Fermi gases with short-range repulsive interactions.
A comparison against recently derived second-order perturbative results shows good agreement in a broad range of interaction strength.
We find remarkable agreement with a recently derived fourth-order expansion that includes $p$-wave contributions.
arXiv Detail & Related papers (2022-12-18T20:08:32Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Quantum Coherent States of Interacting Bose-Fermi Mixtures in One
Dimension [68.8204255655161]
We study two-component atomic gas mixtures in one dimension involving both bosons and fermions.
We report a rich variety of coherent ground-state phases that vary with the intrinsic and relative strength of the interactions.
arXiv Detail & Related papers (2021-10-26T17:52:37Z) - Observation of Cooper Pairs in a Mesoscopic 2D Fermi Gas [0.9901115400430295]
Cooper pairs are the key ingredient to BCS theory as the microscopic explanation of conventional superconductivity.
Here, we directly observe Cooper pairs in a mesoscopic two-dimensional Fermi gas.
Our mesoscopic system is closely related to the physics of nuclei, superconducting grains or quantum dots.
arXiv Detail & Related papers (2021-09-23T17:29:18Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Field-theoretical aspects of one-dimensional Bose and Fermi gases with
contact interactions [0.0]
We investigate local quantum field theories for 1D Bose and Fermi gases with contact interactions.
Because of this three-body coupling, the three-body contact characterizing a local correlation appears in the energy relation for fermions.
The triads for the Tonks-Girardeau gas, which is a Bose gas with a hardcore repulsion, as well as the Bose-Fermi correspondence in the presence of three-body attractions are also discussed.
arXiv Detail & Related papers (2020-11-24T09:04:03Z) - Effective p-wave Fermi-Fermi Interaction Induced by Bosonic Superfluids [8.5232177031029]
We study the two-dimensional Bose-Fermi mixture on square lattice at finite temperature.
We find the emergence of the composite fermion pairs at low temperatures.
arXiv Detail & Related papers (2020-01-02T13:03:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.