論文の概要: System Reliability Engineering in the Age of Industry 4.0: Challenges and Innovations
- arxiv url: http://arxiv.org/abs/2411.08913v1
- Date: Wed, 30 Oct 2024 12:00:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 08:33:29.418564
- Title: System Reliability Engineering in the Age of Industry 4.0: Challenges and Innovations
- Title(参考訳): 産業時代におけるシステム信頼性工学 4.0 : 挑戦とイノベーション
- Authors: Antoine Tordeux, Tim M. Julitz, Isabelle Müller, Zikai Zhang, Jannis Pietruschka, Nicola Fricke, Nadine Schlüter, Stefan Bracke, Manuel Löwer,
- Abstract要約: 条件ベースの監視と予測保守は、重要な進歩の例である。
センサによる監視と運転支援システムによるスマート製造と自動車工学の応用に重点を置いている。
- 参考スコア(独自算出の注目度): 2.7332305169992135
- License:
- Abstract: In the era of Industry 4.0, system reliability engineering faces both challenges and opportunities. On the one hand, the complexity of cyber-physical systems, the integration of novel numerical technologies, and the handling of large amounts of data pose new difficulties for ensuring system reliability. On the other hand, innovations such as AI-driven prognostics, digital twins, and IoT-enabled systems enable the implementation of new methodologies that are transforming reliability engineering. Condition-based monitoring and predictive maintenance are examples of key advancements, leveraging real-time sensor data collection and AI to predict and prevent equipment failures. These approaches reduce failures and downtime, lower costs, and extend equipment lifespan and sustainability. However, it also brings challenges such as data management, integrating complexity, and the need for fast and accurate models and algorithms. Overall, the convergence of advanced technologies in Industry 4.0 requires a rethinking of reliability tasks, emphasising adaptability and real-time data processing. In this chapter, we propose to review recent innovations in the field, related methods and applications, as well as challenges and barriers that remain to be explored. In the red lane, we focus on smart manufacturing and automotive engineering applications with sensor-based monitoring and driver assistance systems.
- Abstract(参考訳): 産業4.0の時代には、システム信頼性工学は課題と機会の両方に直面している。
一方、サイバー物理システムの複雑さ、新しい数値技術の統合、大量のデータの取り扱いは、システムの信頼性を確保するのに新たな困難をもたらす。
一方、AI駆動の予後学、デジタルツイン、IoT対応システムといった革新によって、信頼性エンジニアリングを変革する新たな方法論の実装が可能になる。
条件ベースの監視と予測メンテナンスは、リアルタイムセンサーデータ収集とAIを活用して、機器の故障を予測および防止する重要な進歩の例である。
これらのアプローチは、故障やダウンタイムを低減し、コストを低減し、機器寿命と持続可能性を拡張する。
しかし、データ管理、複雑さの統合、高速で正確なモデルとアルゴリズムの必要性といった課題も伴います。
全体として、産業4.0における先進技術の統合は、信頼性タスクを再考し、適応性とリアルタイムデータ処理を強調する必要がある。
この章では、この分野における最近のイノベーション、関連する方法と応用、そして検討すべき課題と障壁についてレビューすることを提案する。
レッドレーンでは、センサによる監視と運転支援システムを用いたスマート製造と自動車工学の応用に重点を置いている。
関連論文リスト
- DETECTA 2.0: Research into non-intrusive methodologies supported by Industry 4.0 enabling technologies for predictive and cyber-secure maintenance in SMEs [0.19972837513980318]
DETECTA 2.0プロジェクトは、リアルタイム異常検出、高度な分析、予測予測機能を調和させる。
中心となるのはDigital Twinインターフェースで、マシン状態と検出された異常の直感的なリアルタイム可視化を提供する。
予測エンジンは、N-HiTSのような高度な時系列アルゴリズムを使用して、将来のマシン利用トレンドを予測する。
論文 参考訳(メタデータ) (2024-05-24T08:38:38Z) - The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition [136.32656319458158]
2024年のRoboDrive Challengeは、駆動認識技術の発展を促進するために作られた。
今年の挑戦は5つの異なるトラックで構成され、11カ国の93の機関から140の登録チームが集まった。
競争は15の最高パフォーマンスのソリューションで頂点に達した。
論文 参考訳(メタデータ) (2024-05-14T17:59:57Z) - Scalable and Efficient Methods for Uncertainty Estimation and Reduction
in Deep Learning [0.0]
本稿では,ディープラーニングにおける不確実性推定と削減のためのスケーラブルで効率的な手法について検討する。
アウト・オブ・ディストリビューション・インプットとハードウェアの非理想性に起因する不確実性に対処する。
提案手法は,問題認識学習アルゴリズム,新しいNNトポロジ,ハードウェア共同設計ソリューションを含む。
論文 参考訳(メタデータ) (2024-01-13T19:30:34Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
人間のコントロールから独立すると、このようなシステムのサイバーセキュリティはさらに重要になる。
人間のコントロールから独立すると、このようなシステムのサイバーセキュリティはさらに重要になる。
本稿では,技術の現状を徹底的に議論し,新たなセキュリティ課題を特定し,研究の方向性を提案する。
論文 参考訳(メタデータ) (2023-11-05T09:17:39Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
マルチモーダル冗長性(MMRNet)を用いた信頼度の高いオブジェクト検出・分割システムを提案する。
これは、マルチモーダル冗長の概念を導入し、デプロイ中のセンサ障害問題に対処する最初のシステムである。
システム全体の出力信頼性と不確実性を測定するために,すべてのモダリティからの出力を利用する新しいラベルフリーマルチモーダル整合性(MC)スコアを提案する。
論文 参考訳(メタデータ) (2022-10-19T19:15:07Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
インテリジェントな輸送システムを構築するには、人工知能とモビリティ分析の複雑な組み合わせが必要である。
ここ数年、高度なディープニューラルネットワークを使った輸送アプリケーションの開発が急速に進んでいる。
このビジョンペーパーは、解釈可能性と堅牢性を必要とするディープラーニングに基づくモビリティ分析における研究課題を強調する。
論文 参考訳(メタデータ) (2022-10-18T17:28:58Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
我々はInterNという新しい学習パラダイムを開発した。
複数の段階の複数のソースからの監視信号を用いて学習することにより、トレーニング対象のモデルは強力な一般化性を生み出す。
ほとんどの場合、ターゲットドメインのトレーニングデータの10%しか適応していないモデルが、完全なデータセットでトレーニングされたトレーニングデータよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T18:42:50Z) - Requirement Engineering Challenges for AI-intense Systems Development [1.6563993097383285]
重要な課題は、複雑なAIインテリジェンスシステムやアプリケーションの振る舞いと品質特性の定義と保証に関係している、と私たちは主張する。
産業、輸送、ホームオートメーションに関連する複雑なAIインテンシングシステムおよびアプリケーションに関連するユースケースから4つの課題領域を導き出します。
これらの課題を解決することは、複雑なAIインテンシングシステムやアプリケーションの開発アプローチに新しい要件エンジニアリング手法を統合するプロセスサポートを暗示します。
論文 参考訳(メタデータ) (2021-03-18T14:06:13Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
モノのインターネット(IIoT)は、モノのインターネット技術を産業環境に統合することで、将来の製造施設に革命をもたらします。
大規模なIIoTデバイスのデプロイでは、無線ネットワークがさまざまなQoS(Quality-of-Service)要件でユビキタス接続をサポートすることは困難である。
まず、一般的な非クリティカルかつクリティカルなIIoTユースケースの要件を要約します。
次に、大規模なIIoTシナリオと対応する機械学習ソリューションのユニークな特性を、その制限と潜在的な研究方向で識別します。
論文 参考訳(メタデータ) (2021-03-10T20:10:53Z) - Advancing from Predictive Maintenance to Intelligent Maintenance with AI
and IIoT [0.0]
本稿は、過去90年間の信頼性モデリング技術の進化を概観し、産業と学術で開発された主要な技術について論じる。
次に、Intelligent maintenanceという次世代のメンテナンスフレームワークを紹介し、その重要なコンポーネントについて議論します。
このAIおよびIIoTベースのインテリジェントメンテナンスフレームワークは、(1)ディープラーニングによる確率的信頼性モデリングを含む最新の機械学習アルゴリズム、(2)ワイヤレススマートセンサーによるリアルタイムデータ収集、転送、ストレージ、(3)ビッグデータ技術、(4)機械学習モデルの継続的インテグレーションとデプロイ、(5)モバイルデバイスとAR/VRアプリケーションの分野における高速かつより良い意思決定を含む。
論文 参考訳(メタデータ) (2020-09-01T11:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。