論文の概要: Soft Robotics for Search and Rescue: Advancements, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2502.12373v1
- Date: Mon, 17 Feb 2025 23:24:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:11.138505
- Title: Soft Robotics for Search and Rescue: Advancements, Challenges, and Future Directions
- Title(参考訳): Soft Robotics for Search and Rescue:アドバンス、チャレンジ、今後の方向性
- Authors: Abhishek Sebastian,
- Abstract要約: 本稿では,SAR(Search and Rescue)応用に適したソフトロボティクス技術の進歩を批判的に考察する。
バイオインスパイアされたデザイン、フレキシブルな材料、高度な移動機構を活用することで、ソフトロボットは災害シナリオにおける異常なポテンシャルを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Soft robotics has emerged as a transformative technology in Search and Rescue (SAR) operations, addressing challenges in navigating complex, hazardous environments that often limit traditional rigid robots. This paper critically examines advancements in soft robotic technologies tailored for SAR applications, focusing on their unique capabilities in adaptability, safety, and efficiency. By leveraging bio-inspired designs, flexible materials, and advanced locomotion mechanisms, such as crawling, rolling, and shape morphing, soft robots demonstrate exceptional potential in disaster scenarios. However, significant barriers persist, including material durability, power inefficiency, sensor integration, and control complexity. This comprehensive review highlights the current state of soft robotics in SAR, discusses simulation methodologies and hardware validations, and introduces performance metrics essential for their evaluation. By bridging the gap between theoretical advancements and practical deployment, this study underscores the potential of soft robotic systems to revolutionize SAR missions and advocates for continued interdisciplinary innovation to overcome existing limitations.
- Abstract(参考訳): ソフトロボティクスはサーチ・アンド・レスキュー(SAR)における変革的技術として登場し、しばしば従来の剛体ロボットを制限する複雑な危険な環境をナビゲートする際の課題に対処している。
本稿では,SAR応用に適したソフトロボット技術の進歩を批判的に検討し,適応性,安全性,効率性に特有な点に注目した。
生物にインスパイアされたデザイン、柔軟な材料、クロール、ローリング、形状変形などの先進的な移動機構を活用することで、ソフトロボットは災害シナリオにおいて例外的な可能性を示す。
しかし、材料耐久性、電力不効率、センサーの統合、制御の複雑さなど、大きな障壁が持続する。
この総合的なレビューでは、SARにおけるソフトロボティクスの現状を強調し、シミュレーション手法とハードウェア検証について議論し、評価に不可欠なパフォーマンス指標を紹介している。
本研究は,理論的進歩と実践的展開のギャップを埋めることにより,SARミッションに革命をもたらすソフトロボットシステムの可能性と,既存の限界を克服するための学際的イノベーションの継続を提唱する。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
私たちは、NeurIPS 2023カンファレンスでRobot Air Hockey Challengeを組織しました。
我々は、シム・トゥ・リアルギャップ、低レベルの制御問題、安全性問題、リアルタイム要件、実世界のデータの限られた可用性など、ロボット工学における実践的な課題に焦点を当てる。
その結果、学習に基づくアプローチと事前知識を組み合わせたソリューションは、実際のデプロイメントが困難である場合にデータのみに依存するソリューションよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-08T17:20:47Z) - Bridging the gap between Learning-to-plan, Motion Primitives and Safe Reinforcement Learning [20.158498233576143]
キノダイナミック制約の下での軌道計画は、高度なロボティクス応用の基礎となる。
キノダイナミックプランニングの最近の進歩は、複雑な制約の下で複雑な動きを学習・計画技術が生成できることを実証している。
本稿では,学習から計画までの手法と強化学習を組み合わせることで,動作プリミティブのブラックボックス学習と最適化の新たな統合を実現する。
論文 参考訳(メタデータ) (2024-08-26T07:44:53Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
スパイキングニューラルネットワーク(SNN)によるニューロモルフィックコンピューティングの最近の進歩は、ロボット工学の具体的インテリジェンスを可能にする可能性を実証している。
本稿では, ロボットシステムにおいて, エンボディ型ニューロモーフィックAIを実現する方法について考察する。
論文 参考訳(メタデータ) (2024-04-04T09:52:22Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
インテリジェントな輸送システムを構築するには、人工知能とモビリティ分析の複雑な組み合わせが必要である。
ここ数年、高度なディープニューラルネットワークを使った輸送アプリケーションの開発が急速に進んでいる。
このビジョンペーパーは、解釈可能性と堅牢性を必要とするディープラーニングに基づくモビリティ分析における研究課題を強調する。
論文 参考訳(メタデータ) (2022-10-18T17:28:58Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Symbiotic System Design for Safe and Resilient Autonomous Robotics in
Offshore Wind Farms [3.5409202655473724]
Beyond Visual Line of Sight(BVLOS)ロボティクスの障壁には、運用上の安全コンプライアンスとレジリエンスが含まれます。
ロボットプラットフォームと遠隔操作者の相互利益のための知識共有によるライフサイクル学習と共進化を反映した共生システムを提案する。
本手法は,自律ミッションにおける安全性,信頼性,レジリエンスのリアルタイム検証を可能にする。
論文 参考訳(メタデータ) (2021-01-23T11:58:16Z) - Behavioral Repertoires for Soft Tensegrity Robots [0.0]
モバイルソフトロボットは、都市探索や救助から惑星探査まで幅広い分野に魅力的な応用を提供している。
ソフト・ロボット・コントロールの重要な課題は、ソフト・マテリアルが課す非線形力学が、しばしば非直感的でモデル化や予測が難しい複雑な振る舞いをもたらすことである。
本研究では,ロボット力学の事前知識がなく,人間の介入が最小限である行動レパートリーを自律的に生成する物理ソフトな緊張ロボット上で,モデルフリーで動作する品質多様性アルゴリズムを用いる。
論文 参考訳(メタデータ) (2020-09-23T00:09:35Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。