論文の概要: IDCIA: Immunocytochemistry Dataset for Cellular Image Analysis
- arxiv url: http://arxiv.org/abs/2411.08992v1
- Date: Wed, 13 Nov 2024 19:33:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:48.882579
- Title: IDCIA: Immunocytochemistry Dataset for Cellular Image Analysis
- Title(参考訳): IDCIA:細胞画像解析のための免疫細胞化学データセット
- Authors: Abdurahman Ali Mohammed, Catherine Fonder, Donald S. Sakaguchi, Wallapak Tavanapong, Surya K. Mallapragada, Azeez Idris,
- Abstract要約: そこで我々は,細胞画像解析のための機械学習手法の有効性を向上させるために,新しい注釈付き微視的セル画像データセットを提案する。
我々のデータセットには、細胞の顕微鏡像と、各画像、細胞数、細胞の位置が含まれています。
- 参考スコア(独自算出の注目度): 0.5057850174013127
- License:
- Abstract: We present a new annotated microscopic cellular image dataset to improve the effectiveness of machine learning methods for cellular image analysis. Cell counting is an important step in cell analysis. Typically, domain experts manually count cells in a microscopic image. Automated cell counting can potentially eliminate this tedious, time-consuming process. However, a good, labeled dataset is required for training an accurate machine learning model. Our dataset includes microscopic images of cells, and for each image, the cell count and the location of individual cells. The data were collected as part of an ongoing study investigating the potential of electrical stimulation to modulate stem cell differentiation and possible applications for neural repair. Compared to existing publicly available datasets, our dataset has more images of cells stained with more variety of antibodies (protein components of immune responses against invaders) typically used for cell analysis. The experimental results on this dataset indicate that none of the five existing models under this study are able to achieve sufficiently accurate count to replace the manual methods. The dataset is available at https://figshare.com/articles/dataset/Dataset/21970604.
- Abstract(参考訳): そこで我々は,細胞画像解析のための機械学習手法の有効性を向上させるために,新しい注釈付き微視的セル画像データセットを提案する。
細胞カウントは細胞解析における重要なステップである。
通常、ドメインの専門家は顕微鏡画像に細胞を手動でカウントする。
細胞の自動カウントは、この面倒で時間のかかるプロセスをなくす可能性がある。
しかし、正確な機械学習モデルをトレーニングするためには、良質なラベル付きデータセットが必要である。
我々のデータセットには、細胞の顕微鏡像と、各画像、細胞数、細胞の位置が含まれています。
これらのデータは、幹細胞の分化を調節する電気刺激の可能性と神経修復への応用について、現在進行中の研究の一環として収集されている。
既存の公開データセットと比較して、我々のデータセットはより多様な抗体(侵入者に対する免疫反応のタンパク質成分)で染色された細胞の画像が多い。
このデータセットによる実験結果から,手作業の方法を置き換えるために,既存の5つのモデルのうち,十分な正確なカウントを達成できないことが示唆された。
データセットはhttps://figshare.com/articles/dataset/Dataset/2 1970604で公開されている。
関連論文リスト
- DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
DiffKillRは、アーチェタイプマッチングと画像登録タスクの組み合わせとして、セルアノテーションを再構成する新しいフレームワークである。
我々はDiffKillRの理論的性質について論じ、それを3つの顕微鏡タスクで検証し、既存の教師付き・半教師なし・教師なしの手法に対する利点を実証する。
論文 参考訳(メタデータ) (2024-10-04T00:38:29Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Deep Learning Enabled Time-Lapse 3D Cell Analysis [7.094247258573337]
本稿では, タイムラプスな3Dセル解析手法を提案する。
そこで我々は,細胞下の特徴を正確に局所化し,定量的に分析する問題を考察した。
コードはGithubで入手でき、このメソッドはBisQueポータル経由でサービスとして利用できる。
論文 参考訳(メタデータ) (2022-08-17T00:07:25Z) - CellCentroidFormer: Combining Self-attention and Convolution for Cell
Detection [4.555723508665994]
顕微鏡画像における細胞検出のためのハイブリッドCNN-ViTモデルを提案する。
センチロイドを用いた細胞検出法は、細胞を楕円体として表現し、エンドツーエンドの訓練を可能にする。
論文 参考訳(メタデータ) (2022-06-01T09:04:39Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - A fully automated end-to-end process for fluorescence microscopy images
of yeast cells: From segmentation to detection and classification [0.0]
酵母細胞の蛍光顕微鏡画像の細胞区画を自動的にセグメント化し、検出し、分類するエンドツーエンドのプロセスを構築します。
この完全に自動化されたプロセスは、PerICo1プロジェクトの対話型e-Scienceサーバに統合される。
応用領域は酵母細胞における光学顕微鏡であるが、医療用途における多細胞画像にも適用できる。
論文 参考訳(メタデータ) (2021-04-06T21:24:50Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Classification Beats Regression: Counting of Cells from Greyscale
Microscopic Images based on Annotation-free Training Samples [20.91256120719461]
本研究は、注釈付きトレーニング画像を用いることなく、グレースケールの顕微鏡画像から細胞をカウントする教師あり学習フレームワークを提案する。
我々は、セルカウントタスクを画像分類問題として定式化し、セルカウントをクラスラベルとする。
これらの制約に対処するために,未確認の細胞数に対する画像の合成を行う,単純だが効果的なデータ拡張法を提案する。
論文 参考訳(メタデータ) (2020-10-28T06:19:30Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。