論文の概要: Language-Model Prior Overcomes Cold-Start Items
- arxiv url: http://arxiv.org/abs/2411.09065v1
- Date: Wed, 13 Nov 2024 22:45:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:25:29.150093
- Title: Language-Model Prior Overcomes Cold-Start Items
- Title(参考訳): 言語モデルがコールドスタートアイテムを優先的に上回る
- Authors: Shiyu Wang, Hao Ding, Yupeng Gu, Sergul Aydore, Kousha Kalantari, Branislav Kveton,
- Abstract要約: RecSysの成長は、デジタル化と、eコマースやビデオストリーミングなどの分野におけるパーソナライズされたコンテンツの必要性による。
コンテンツベースのレコメンデータやハイブリッドメソッドといったコールドスタート問題の既存のソリューションは、アイテムメタデータを活用してアイテムの類似性を決定する。
本稿では,言語モデル(LM)を用いて項目類似度を推定する,コールドスタートアイテムレコメンデーションのための新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 14.370472820496802
- License:
- Abstract: The growth of recommender systems (RecSys) is driven by digitization and the need for personalized content in areas such as e-commerce and video streaming. The content in these systems often changes rapidly and therefore they constantly face the ongoing cold-start problem, where new items lack interaction data and are hard to value. Existing solutions for the cold-start problem, such as content-based recommenders and hybrid methods, leverage item metadata to determine item similarities. The main challenge with these methods is their reliance on structured and informative metadata to capture detailed item similarities, which may not always be available. This paper introduces a novel approach for cold-start item recommendation that utilizes the language model (LM) to estimate item similarities, which are further integrated as a Bayesian prior with classic recommender systems. This approach is generic and able to boost the performance of various recommenders. Specifically, our experiments integrate it with both sequential and collaborative filtering-based recommender and evaluate it on two real-world datasets, demonstrating the enhanced performance of the proposed approach.
- Abstract(参考訳): レコメンデーターシステム(RecSys)の成長は、デジタル化と、eコマースやビデオストリーミングといった分野におけるパーソナライズされたコンテンツの必要性によって引き起こされる。
これらのシステムのコンテンツは、しばしば急速に変化するため、新しいアイテムが相互作用データに欠け、価値が低い、継続的なコールドスタート問題に直面します。
コンテンツベースのレコメンデータやハイブリッドメソッドといったコールドスタート問題の既存のソリューションは、アイテムメタデータを活用してアイテムの類似性を決定する。
これらの手法の主な課題は、詳細な項目の類似性を捉えるために構造化された情報的メタデータに依存していることである。
本稿では,古典的なレコメンデーションシステムとベイズ的先行システムとしてさらに統合された言語モデル(LM)を用いて,アイテムの類似性を推定する,コールドスタートアイテムレコメンデーションのための新しいアプローチを提案する。
このアプローチは汎用的で、さまざまなレコメンデータのパフォーマンスを高めることができる。
具体的には、逐次的かつ協調的なフィルタリングに基づくレコメンデータと統合し、2つの実世界のデータセットで評価し、提案手法の性能向上を実証する。
関連論文リスト
- General Item Representation Learning for Cold-start Content Recommendations [12.729624639270405]
冷間開始レコメンデーションのためのドメイン/データに依存しない表現学習フレームワークを提案する。
提案するモデルは、分類ラベルから完全に自由なエンドツーエンドのトレーニングが可能である。
論文 参考訳(メタデータ) (2024-04-22T00:48:56Z) - Could Small Language Models Serve as Recommenders? Towards Data-centric
Cold-start Recommendations [38.91330250981614]
本稿では,言語モデルの文脈内学習に基づくシンプルだが効果的なアプローチであるPromptRecを提案する。
本稿では,データ中心パイプラインを用いたレコメンデータシステムのための小型言語モデルを提案する。
私たちの知る限りでは、システムコールドスタートレコメンデーション問題に取り組む最初の研究である。
論文 参考訳(メタデータ) (2023-06-29T18:50:12Z) - Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item
Recommendation [71.5871100348448]
ColdGPTは、アイテム内容からきめ細かい属性を抽出することにより、アイテム属性相関をアイテム属性グラフにモデル化する。
ColdGPTは、さまざまな利用可能なデータソース、すなわちアイテムの内容、過去の購入シーケンス、既存のアイテムのレビューテキストから、知識をアイテム属性グラフに転送する。
大規模な実験により、ColdGPTは既存のSCSレコメンデーターを大きなマージンで一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-06-26T07:04:47Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
本稿では,対象候補の識別子を自己回帰的に復号する新たな生成検索手法を提案する。
そのために、各項目のセマンティックIDとして機能するために、意味論的に意味のあるコードワードを作成します。
提案手法を用いて学習した推薦システムは,様々なデータセット上での現在のSOTAモデルよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-08T21:48:17Z) - FELRec: Efficient Handling of Item Cold-Start With Dynamic Representation Learning in Recommender Systems [0.0]
本稿では、ユーザとアイテムの既存の表現を洗練する大規模な埋め込みネットワークであるFELRecを紹介する。
類似のアプローチとは対照的に、我々のモデルはサイド情報や時間を要する微調整を伴わない新しいユーザやアイテムを表現している。
提案したモデルは、ゼロショット設定でこれまで見られなかったデータセットをうまく一般化する。
論文 参考訳(メタデータ) (2022-10-30T19:08:38Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
メタラーニングをベースとした多元的ドメインを用いた多元的推論拡張フレームワークを提案する。
我々は、疎結合の場合の過度な適合を扱うために、新しい関心領域において多様な評価を生成する。
これらの評価は、選好メタラーナーを学ぶためのメタトレーニング手順に導入され、優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2022-04-01T10:10:50Z) - Sequential Recommendation via Stochastic Self-Attention [68.52192964559829]
Transformerベースのアプローチでは、アイテムをベクトルとして埋め込んで、ドット積の自己アテンションを使用してアイテム間の関係を測定する。
本稿では,これらの問題を克服するための新しいtextbfStochastic textbfSelf-textbfAttention (STOSA) を提案する。
我々は、アイテムと項目の位置関係を列で特徴づける新しいワッサースタイン自己保持モジュールを考案した。
論文 参考訳(メタデータ) (2022-01-16T12:38:45Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Cold-start Sequential Recommendation via Meta Learner [10.491428090228768]
本研究では,逐次推薦における項目コールドスタート問題を軽減するために,メタラーニングに基づくコールドスタートシーケンシャルレコメンデーションフレームワーク,mecosを提案する。
mecosは限られたインタラクションからユーザの好みを効果的に抽出し、ターゲットのコールドスタートアイテムと潜在的なユーザとのマッチングを学ぶ。
論文 参考訳(メタデータ) (2020-12-10T05:23:13Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
コールドスタートユーザに対しては,属性を問うと同時に,ユーザに対して対話的に商品を推薦する,対話型レコメンデーションを提案する。
会話型トンプソンサンプリング(ConTS)モデルでは,最大報酬の腕を選択することで,対話型レコメンデーションにおけるすべての質問を一意に解決する。
論文 参考訳(メタデータ) (2020-05-23T08:56:37Z) - A Hybrid Approach to Enhance Pure Collaborative Filtering based on
Content Feature Relationship [0.17188280334580192]
本稿では,自然言語処理領域であるWord2Vecから,コンテンツ特徴間の暗黙的な関係を抽出する手法を提案する。
次に、関連性を利用してアイテムのベクトル表現を決定する新しいコンテンツベースレコメンデーションシステムを提案する。
評価結果から,ユーザが選択した項目の選好を,純粋に協調的なフィルタリングと同等に予測できることが示唆された。
論文 参考訳(メタデータ) (2020-05-17T02:20:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。