論文の概要: Prompt Tuning for Item Cold-start Recommendation
- arxiv url: http://arxiv.org/abs/2412.18082v1
- Date: Tue, 24 Dec 2024 01:38:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:46.183055
- Title: Prompt Tuning for Item Cold-start Recommendation
- Title(参考訳): アイテムコールドスタート勧告のためのプロンプトチューニング
- Authors: Yuezihan Jiang, Gaode Chen, Wenhan Zhang, Jingchi Wang, Yinjie Jiang, Qi Zhang, Jingjian Lin, Peng Jiang, Kaigui Bian,
- Abstract要約: コールドスタートフェーズの成功は、アイテムが人気のあるものに移行できるかどうかを決定するため、オンラインレコメンデーションシステムにとって、アイテムコールドスタート問題は不可欠である。
自然言語処理(NLP)においてゼロまたは少数ショット問題に対処するために使用される強力なテクニックであるPrompt Learningは、同様の課題に対処するための推奨システムに適応している。
本稿では,この2つの問題を同時に解決するために,高価値な正のフィードバック(ピンナクルフィードバック)をプロンプト情報として活用することを提案する。
- 参考スコア(独自算出の注目度): 21.073232866618554
- License:
- Abstract: The item cold-start problem is crucial for online recommender systems, as the success of the cold-start phase determines whether items can transition into popular ones. Prompt learning, a powerful technique used in natural language processing (NLP) to address zero- or few-shot problems, has been adapted for recommender systems to tackle similar challenges. However, existing methods typically rely on content-based properties or text descriptions for prompting, which we argue may be suboptimal for cold-start recommendations due to 1) semantic gaps with recommender tasks, 2) model bias caused by warm-up items contribute most of the positive feedback to the model, which is the core of the cold-start problem that hinders the recommender quality on cold-start items. We propose to leverage high-value positive feedback, termed pinnacle feedback as prompt information, to simultaneously resolve the above two problems. We experimentally prove that compared to the content description proposed in existing works, the positive feedback is more suitable to serve as prompt information by bridging the semantic gaps. Besides, we propose item-wise personalized prompt networks to encode pinnaclce feedback to relieve the model bias by the positive feedback dominance problem. Extensive experiments on four real-world datasets demonstrate the superiority of our model over state-of-the-art methods. Moreover, PROMO has been successfully deployed on a popular short-video sharing platform, a billion-user scale commercial short-video application, achieving remarkable performance gains across various commercial metrics within cold-start scenarios
- Abstract(参考訳): コールドスタートフェーズの成功は、アイテムが人気のあるものに移行できるかどうかを決定するため、オンラインレコメンデーションシステムにとって、アイテムコールドスタート問題は不可欠である。
自然言語処理(NLP)においてゼロまたは少数ショット問題に対処するために使用される強力なテクニックであるPrompt Learningは、同様の課題に対処するための推奨システムに適応している。
しかし、既存の手法は、典型的にはコンテンツベースのプロパティやテキスト記述をプロンプトに頼っている。
1)レコメンデーションタスクとのセマンティックギャップ。
2) 暖房項目によるモデルバイアスは, 冷房項目の推奨品質を阻害する冷房問題の中核である, モデルに対する肯定的なフィードバックの大部分に寄与する。
本稿では,この2つの問題を同時に解決するために,高価値な正のフィードバック(ピンナクルフィードバック)をプロンプト情報として活用することを提案する。
本研究は,既存の研究で提案されている内容記述と比較して,有意なフィードバックが意味的ギャップを埋めることによる迅速な情報提供に適していることを実験的に証明する。
さらに,Pinnaclceフィードバックを符号化し,正のフィードバック優位性問題によってモデルバイアスを緩和する,アイテムワイズパーソナライズされたプロンプトネットワークを提案する。
4つの実世界のデータセットに対する大規模な実験は、我々のモデルが最先端の手法よりも優れていることを示す。
さらに、PROMOは10億人規模の商用ショートビデオアプリケーションである人気のショートビデオ共有プラットフォームにデプロイされ、コールドスタートシナリオにおけるさまざまな商用メトリクスのパフォーマンス向上に成功している。
関連論文リスト
- Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap [78.26201062505814]
コールドスタート問題は、リコメンデータシステムにおける長年の課題のひとつだ。
インターネットプラットフォームの普及とユーザやアイテムの指数的な成長により、コールドスタートレコメンデーション(CSR)の重要性が増している。
本稿では、CSRのロードマップ、関連文献、今後の方向性について、包括的なレビューと議論を行う。
論文 参考訳(メタデータ) (2025-01-03T18:51:18Z) - Online Item Cold-Start Recommendation with Popularity-Aware Meta-Learning [14.83192161148111]
本稿では,アイテムコールドスタート問題に対処するために,Popularity-Aware Meta-learning (PAM) と呼ばれるモデルに依存しない推薦アルゴリズムを提案する。
PAMは、入力データを予め定義されたアイテム人気閾値によって異なるメタ学習タスクに分割する。
これらのタスク修正設計により、オフラインメソッドと比較して計算とストレージコストが大幅に削減される。
論文 参考訳(メタデータ) (2024-11-18T01:30:34Z) - Language-Model Prior Overcomes Cold-Start Items [14.370472820496802]
RecSysの成長は、デジタル化と、eコマースやビデオストリーミングなどの分野におけるパーソナライズされたコンテンツの必要性による。
コンテンツベースのレコメンデータやハイブリッドメソッドといったコールドスタート問題の既存のソリューションは、アイテムメタデータを活用してアイテムの類似性を決定する。
本稿では,言語モデル(LM)を用いて項目類似度を推定する,コールドスタートアイテムレコメンデーションのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-13T22:45:52Z) - Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
きめ細かいフィードバックは、画像の品質と迅速な調整におけるニュアンスドの区別を捉えます。
粗いフィードバックに対する優位性を示すことは、自動ではないことを示す。
きめ細かいフィードバックを抽出し活用する上で重要な課題を特定します。
論文 参考訳(メタデータ) (2024-06-24T17:19:34Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
選好選好における選好バイアスの影響について検討した。
大きなハードルは、好みの推論インタラクションを持つ公開データセットがないことです。
本稿では,トピックに基づく選好提案プロセスのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-05-01T14:56:56Z) - Cold & Warm Net: Addressing Cold-Start Users in Recommender Systems [10.133475523630139]
コールドスタートレコメンデーションは、レコメンダシステム(RS)が直面する大きな課題の1つです。
本稿では,コールドスタートユーザとウォームアップユーザをそれぞれモデル化する専門家モデルに基づいて,コールド&ウォームネットを提案する。
提案モデルはまた,産業用ショートビデオプラットフォーム上に展開され,アプリドウェル時間とユーザ保持率の大幅な向上を実現している。
論文 参考訳(メタデータ) (2023-09-27T13:31:43Z) - Could Small Language Models Serve as Recommenders? Towards Data-centric
Cold-start Recommendations [38.91330250981614]
本稿では,言語モデルの文脈内学習に基づくシンプルだが効果的なアプローチであるPromptRecを提案する。
本稿では,データ中心パイプラインを用いたレコメンデータシステムのための小型言語モデルを提案する。
私たちの知る限りでは、システムコールドスタートレコメンデーション問題に取り組む最初の研究である。
論文 参考訳(メタデータ) (2023-06-29T18:50:12Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Cold-start Sequential Recommendation via Meta Learner [10.491428090228768]
本研究では,逐次推薦における項目コールドスタート問題を軽減するために,メタラーニングに基づくコールドスタートシーケンシャルレコメンデーションフレームワーク,mecosを提案する。
mecosは限られたインタラクションからユーザの好みを効果的に抽出し、ターゲットのコールドスタートアイテムと潜在的なユーザとのマッチングを学ぶ。
論文 参考訳(メタデータ) (2020-12-10T05:23:13Z) - Addressing the Cold-Start Problem in Outfit Recommendation Using Visual
Preference Modelling [51.147871738838305]
本稿では,新しい視覚的嗜好モデリング手法を活用することで,新規ユーザに対するコールドスタート問題に対処する。
機能重み付けクラスタリングによるアプローチの活用を実演し、時事指向の衣装レコメンデーションをパーソナライズする。
論文 参考訳(メタデータ) (2020-08-04T10:07:09Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
コールドスタートユーザに対しては,属性を問うと同時に,ユーザに対して対話的に商品を推薦する,対話型レコメンデーションを提案する。
会話型トンプソンサンプリング(ConTS)モデルでは,最大報酬の腕を選択することで,対話型レコメンデーションにおけるすべての質問を一意に解決する。
論文 参考訳(メタデータ) (2020-05-23T08:56:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。