Continuous GNN-based Anomaly Detection on Edge using Efficient Adaptive Knowledge Graph Learning
- URL: http://arxiv.org/abs/2411.09072v1
- Date: Wed, 13 Nov 2024 22:55:45 GMT
- Title: Continuous GNN-based Anomaly Detection on Edge using Efficient Adaptive Knowledge Graph Learning
- Authors: Sanggeon Yun, Ryozo Masukawa, William Youngwoo Chung, Minhyoung Na, Nathaniel Bastian, Mohsen Imani,
- Abstract summary: Video Anomaly Detection (VAD) is a critical task in applications such as intelligent surveillance, evidence investigation, and violence detection.
Traditional approaches to VAD often rely on finetuning large pre-trained models, which can be computationally expensive and impractical for real-time or resource-constrained environments.
In this paper, we propose a novel framework that facilitates continuous KG adaptation directly on edge devices, overcoming the limitations of cloud dependency.
- Score: 4.479496001941191
- License:
- Abstract: The increasing demand for robust security solutions across various industries has made Video Anomaly Detection (VAD) a critical task in applications such as intelligent surveillance, evidence investigation, and violence detection. Traditional approaches to VAD often rely on finetuning large pre-trained models, which can be computationally expensive and impractical for real-time or resource-constrained environments. To address this, MissionGNN introduced a more efficient method by training a graph neural network (GNN) using a fixed knowledge graph (KG) derived from large language models (LLMs) like GPT-4. While this approach demonstrated significant efficiency in computational power and memory, it faces limitations in dynamic environments where frequent updates to the KG are necessary due to evolving behavior trends and shifting data patterns. These updates typically require cloud-based computation, posing challenges for edge computing applications. In this paper, we propose a novel framework that facilitates continuous KG adaptation directly on edge devices, overcoming the limitations of cloud dependency. Our method dynamically modifies the KG through a three-phase process: pruning, alternating, and creating nodes, enabling real-time adaptation to changing data trends. This continuous learning approach enhances the robustness of anomaly detection models, making them more suitable for deployment in dynamic and resource-constrained environments.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - EDGE++: Improved Training and Sampling of EDGE [17.646159460584926]
We propose enhancements to the EDGE model to address these issues.
Specifically, we introduce a degree-specific noise schedule that optimize the number of active nodes at each timestep.
We also present an improved sampling scheme that fine-tunes the generative process, allowing for better control over the similarity between the synthesized and the true network.
arXiv Detail & Related papers (2023-10-22T22:54:20Z) - Multiplicative update rules for accelerating deep learning training and
increasing robustness [69.90473612073767]
We propose an optimization framework that fits to a wide range of machine learning algorithms and enables one to apply alternative update rules.
We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule.
arXiv Detail & Related papers (2023-07-14T06:44:43Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
This study follows many previous approaches to multi-object tracking (MOT) that model the problem using graph-based data structures.
We create a framework based on dynamic undirected graphs that represent the data association problem over multiple timesteps.
We also provide solutions and propositions for the computational problems that need to be addressed to create a memory-efficient, real-time, online algorithm.
arXiv Detail & Related papers (2021-01-11T21:52:25Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Towards an Efficient and General Framework of Robust Training for Graph
Neural Networks [96.93500886136532]
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks.
Despite GNNs' impressive performance, it has been observed that carefully crafted perturbations on graph structures lead them to make wrong predictions.
We propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs.
arXiv Detail & Related papers (2020-02-25T15:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.