Drone Detection using Deep Neural Networks Trained on Pure Synthetic Data
- URL: http://arxiv.org/abs/2411.09077v1
- Date: Wed, 13 Nov 2024 23:09:53 GMT
- Title: Drone Detection using Deep Neural Networks Trained on Pure Synthetic Data
- Authors: Mariusz Wisniewski, Zeeshan A. Rana, Ivan Petrunin, Alan Holt, Stephen Harman,
- Abstract summary: We present a drone detection Faster-RCNN model trained on a purely synthetic dataset that transfers to real-world data.
Our results show that using synthetic data for drone detection has the potential to reduce data collection costs and improve labelling quality.
- Score: 0.4369058206183195
- License:
- Abstract: Drone detection has benefited from improvements in deep neural networks, but like many other applications, suffers from the availability of accurate data for training. Synthetic data provides a potential for low-cost data generation and has been shown to improve data availability and quality. However, models trained on synthetic datasets need to prove their ability to perform on real-world data, known as the problem of sim-to-real transferability. Here, we present a drone detection Faster-RCNN model trained on a purely synthetic dataset that transfers to real-world data. We found that it achieves an AP_50 of 97.0% when evaluated on the MAV-Vid - a real dataset of flying drones - compared with 97.8% for an equivalent model trained on real-world data. Our results show that using synthetic data for drone detection has the potential to reduce data collection costs and improve labelling quality. These findings could be a starting point for more elaborate synthetic drone datasets. For example, realistic recreations of specific scenarios could de-risk the dataset generation of safety-critical applications such as the detection of drones at airports. Further, synthetic data may enable reliable drone detection systems, which could benefit other areas, such as unmanned traffic management systems. The code is available https://github.com/mazqtpopx/cranfield-synthetic-drone-detection alongside the datasets https://huggingface.co/datasets/mazqtpopx/cranfield-synthetic-drone-detection.
Related papers
- Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
We propose a methodology for improving the performance of a pre-trained object detector when training on synthetic data.
Our approach focuses on extracting the salient information from synthetic data without forgetting useful features learned from pre-training on real images.
arXiv Detail & Related papers (2024-05-30T08:31:01Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
A swarm of intelligent wireless devices train a shared neural network model with the help of a drone.
The proposed framework achieves a significant speedup in training, leading to an average 24% and 87% saving in the drone hovering time.
arXiv Detail & Related papers (2023-03-03T23:46:25Z) - A Synthetic Dataset for 5G UAV Attacks Based on Observable Network
Parameters [3.468596481227013]
This paper presents the first synthetic dataset for Unmanned Aerial Vehicle (UAV) attacks in 5G and beyond networks.
The main objective of this data is to enable deep network development for UAV communication security.
The proposed dataset provides insights into network functionality when static or moving UAV attackers target authenticated UAVs in an urban environment.
arXiv Detail & Related papers (2022-11-05T15:12:51Z) - Track Boosting and Synthetic Data Aided Drone Detection [0.0]
Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data.
Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance.
arXiv Detail & Related papers (2021-11-24T10:16:27Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Scarce Data Driven Deep Learning of Drones via Generalized Data
Distribution Space [12.377024173799631]
We show how understanding the general distribution of the drone data via a Generative Adversarial Network (GAN) can allow us to acquire missing data to achieve rapid and more accurate learning.
We demonstrate our results on a drone image dataset, which contains both real drone images as well as simulated images from computer-aided design.
arXiv Detail & Related papers (2021-08-18T17:07:32Z) - UnrealPerson: An Adaptive Pipeline towards Costless Person
Re-identification [102.58619642363959]
This paper presents UnrealPerson, a novel pipeline that makes full use of unreal image data to decrease the costs in both the training and deployment stages.
With 3,000 IDs and 120,000 instances, our method achieves a 38.5% rank-1 accuracy when being directly transferred to MSMT17.
arXiv Detail & Related papers (2020-12-08T08:15:30Z) - On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause
Detection and Identification [6.585891825257162]
We propose novel architectures to detect and classify drone mis-operations based on sensor data.
We validate the proposed deep-learning architectures via simulations and experiments on a real drone.
Our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations.
arXiv Detail & Related papers (2020-04-03T22:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.