Real-time measurement error mitigation for one-way quantum computation
- URL: http://arxiv.org/abs/2411.09084v1
- Date: Wed, 13 Nov 2024 23:27:47 GMT
- Title: Real-time measurement error mitigation for one-way quantum computation
- Authors: Tobias Hartung, Stephan Schuster, Joachim von Zanthier, Karl Jansen,
- Abstract summary: We propose a quantum error mitigation scheme for single-qubit measurement errors, particularly suited for one-way quantum computation.
Our method is capable of mitigating measurement errors in real-time, during the processing measurements of the one-way computation.
- Score: 0.0
- License:
- Abstract: We propose a quantum error mitigation scheme for single-qubit measurement errors, particularly suited for one-way quantum computation. Contrary to well established error mitigation methods for circuit-based quantum computation, that require to run the circuits several times, our method is capable of mitigating measurement errors in real-time, during the processing measurements of the one-way computation. For that, an ancillary qubit register is entangled with the to-be-measured qubit and additionally measured afterwards. By using a voting protocol on all measurement outcomes, occurring measurement errors can be mitigated in real-time while the one-way computation continues. We provide an analytical expression for the probability to detect a measurement error in dependency of the error rate and the number of ancilla qubits. From this, we derive an estimate of the ancilla register size for a given measurement error rate and a required success probability to detect a measurement error. Additionally, we also consider the CNOT gate error in our mitigation method and investigate how this influences the probability to detect a measurement error. Finally, we show in proof-of-principle simulations, also considering a hardware noise model, that our method is capable of reducing the measurement errors significantly in a one-way quantum computation with only a small number of ancilla qubits.
Related papers
- Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling [7.804530685405802]
Quantum measurements are a fundamental component of quantum computing.
On modern-day quantum computers, measurements can be more error prone than quantum gates.
We show that measurement errors can be tailored into a simple error model using randomized compiling.
arXiv Detail & Related papers (2023-12-21T18:57:13Z) - Randomized compiling for subsystem measurements [0.0]
We introduce a new technique based on randomized compiling to transform errors in measurements into a simple form that removes particularly harmful effects.
We show that our technique reduces generic errors in a computational basis measurement to act like a confusion matrix.
We demonstrate that a simple and realistic noise model can cause errors that are harmful and difficult to model.
arXiv Detail & Related papers (2023-04-13T15:06:11Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms.
We consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error.
We show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates.
arXiv Detail & Related papers (2022-01-20T00:05:01Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Mitigation of Crosstalk Errors in a Quantum Measurement and Its
Applications [1.433758865948252]
We present a framework for mitigating measurement errors, for both individual and crosstalk errors.
The mitigation protocol is realized in IBMQ Sydney and applied to the certification of entanglement-generating circuits.
arXiv Detail & Related papers (2021-12-20T16:20:49Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Measurement Error Mitigation in Quantum Computers Through Classical
Bit-Flip Correction [1.6872254218310017]
We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers.
This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability.
arXiv Detail & Related papers (2020-07-07T17:52:12Z) - Mitigating measurement errors in multi-qubit experiments [2.7015517125109247]
We show how to mitigate measurement errors by a classical post-processing of the measured outcomes.
Two error mitigation schemes are presented based on tensor product and correlated Markovian noise models.
arXiv Detail & Related papers (2020-06-24T20:56:18Z) - Scalable quantum processor noise characterization [57.57666052437813]
We present a scalable way to construct approximate MFMs for many-qubit devices based on cumulant expansion.
Our method can also be used to characterize various types of correlation error.
arXiv Detail & Related papers (2020-06-02T17:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.