Measurement Error Mitigation in Quantum Computers Through Classical
Bit-Flip Correction
- URL: http://arxiv.org/abs/2007.03663v3
- Date: Thu, 1 Sep 2022 17:18:35 GMT
- Title: Measurement Error Mitigation in Quantum Computers Through Classical
Bit-Flip Correction
- Authors: Lena Funcke, Tobias Hartung, Karl Jansen, Stefan K\"uhn, Paolo
Stornati, Xiaoyang Wang
- Abstract summary: We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers.
This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability.
- Score: 1.6872254218310017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a classical bit-flip correction method to mitigate measurement
errors on quantum computers. This method can be applied to any operator, any
number of qubits, and any realistic bit-flip probability. We first demonstrate
the successful performance of this method by correcting the noisy measurements
of the ground-state energy of the longitudinal Ising model. We then generalize
our results to arbitrary operators and test our method both numerically and
experimentally on IBM quantum hardware. As a result, our correction method
reduces the measurement error on the quantum hardware by up to one order of
magnitude. We finally discuss how to pre-process the method and extend it to
other errors sources beyond measurement errors. For local Hamiltonians, the
overhead costs are polynomial in the number of qubits, even if multi-qubit
correlations are included.
Related papers
- Measuring error rates of mid-circuit measurements [0.0]
We introduce the first benchmarking protocol that measures the rate at which mid-circuit measurements induce errors in many-qubit circuits.
We detect and eliminate previously undetected measurement-induced crosstalk in a 20-qubit trapped-ion quantum computer.
We quantify how much of that error is eliminated by dynamical decoupling.
arXiv Detail & Related papers (2024-10-22T05:22:43Z) - Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling [7.804530685405802]
Quantum measurements are a fundamental component of quantum computing.
On modern-day quantum computers, measurements can be more error prone than quantum gates.
We show that measurement errors can be tailored into a simple error model using randomized compiling.
arXiv Detail & Related papers (2023-12-21T18:57:13Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Mitigation of Crosstalk Errors in a Quantum Measurement and Its
Applications [1.433758865948252]
We present a framework for mitigating measurement errors, for both individual and crosstalk errors.
The mitigation protocol is realized in IBMQ Sydney and applied to the certification of entanglement-generating circuits.
arXiv Detail & Related papers (2021-12-20T16:20:49Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Qubit Readout Error Mitigation with Bit-flip Averaging [0.0]
We present a scheme to more efficiently mitigate qubit readout errors on quantum hardware.
Our scheme removes biases in the readout errors allowing a general error model to be built with far fewer calibration measurements.
Our approach can be combined with, and simplify, other mitigation methods allowing tractable mitigation even for large numbers of qubits.
arXiv Detail & Related papers (2021-06-10T15:08:06Z) - Mitigating measurement errors in multi-qubit experiments [2.7015517125109247]
We show how to mitigate measurement errors by a classical post-processing of the measured outcomes.
Two error mitigation schemes are presented based on tensor product and correlated Markovian noise models.
arXiv Detail & Related papers (2020-06-24T20:56:18Z) - Scalable quantum processor noise characterization [57.57666052437813]
We present a scalable way to construct approximate MFMs for many-qubit devices based on cumulant expansion.
Our method can also be used to characterize various types of correlation error.
arXiv Detail & Related papers (2020-06-02T17:39:42Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.