VideoCogQA: A Controllable Benchmark for Evaluating Cognitive Abilities in Video-Language Models
- URL: http://arxiv.org/abs/2411.09105v2
- Date: Tue, 01 Jul 2025 03:47:15 GMT
- Title: VideoCogQA: A Controllable Benchmark for Evaluating Cognitive Abilities in Video-Language Models
- Authors: Chenglin Li, Qianglong Chen, Zhi Li, Feng Tao, Yin Zhang,
- Abstract summary: Large Video-Language Models (LVLMs) have led to promising results in multimodal video understanding.<n>It remains unclear whether these models possess the cognitive capabilities required for high-level tasks, particularly those involving symbolic and abstract perception.<n>We propose VideoCogQA, a scalable and fully controllable benchmark inspired by game-world environments.<n>By generating synthetic videos via a programmatic engine, VideoCogQA allows fine-grained control over visual elements, temporal dynamics, and task difficulty.
- Score: 19.215440092652507
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advancements in Large Video-Language Models (LVLMs) have led to promising results in multimodal video understanding. However, it remains unclear whether these models possess the cognitive capabilities required for high-level tasks, particularly those involving symbolic and abstract perception. Existing benchmarks typically rely on real-world, annotated videos, which lack control over video content and inherent difficulty, limiting their diagnostic power. To bridge this gap, we propose VideoCogQA, a scalable and fully controllable benchmark inspired by game-world environments, designed to evaluate the cognitive abilities of LVLMs. By generating synthetic videos via a programmatic engine, VideoCogQA allows fine-grained control over visual elements, temporal dynamics, and task difficulty. This approach enables a focused evaluation of video cognitive abilities, independent of prior knowledge from visual scene semantics. The dataset includes 800 videos and 3,280 question-answer pairs, featuring tasks related to abstract concepts, symbolic elements, and multimodal integration, with varying levels of difficulty. Experimental results show that even state-of-the-art (SOTA) models, such as GPT-4o, achieve an average performance of 48.8% on tasks involving abstract concepts. Additionally, performance drops by 15% as task complexity increases, highlighting the challenges LVLMs face in maintaining consistent performance. Through this work, we hope to show the limitations of current LVLMs and offer insights into how they can more effectively emulate human cognitive processes in the future.
Related papers
- VideoReasonBench: Can MLLMs Perform Vision-Centric Complex Video Reasoning? [18.9270920369958]
Long chain-of-thought (CoT) reasoning can significantly enhance the performance of large language models (LLMs) on complex tasks.<n>Recent efforts have proposed benchmarks aimed at video reasoning, but tasks are often knowledge-driven and do not rely heavily on visual content.<n>We introduce VideoReasonBench, a benchmark designed to evaluate vision-centric, complex video reasoning.
arXiv Detail & Related papers (2025-05-29T11:33:43Z) - TUNA: Comprehensive Fine-grained Temporal Understanding Evaluation on Dense Dynamic Videos [26.97196583891564]
We introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos.<n>Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria.<n>This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion.
arXiv Detail & Related papers (2025-05-26T15:24:06Z) - SAMA: Towards Multi-Turn Referential Grounded Video Chat with Large Language Models [80.3895950009792]
Achieving fine-grained-temporal understanding in videos remains a major challenge for current Video Large Multimodels (Video LMMs)<n>We contribute in three core aspects: dataset, model, and benchmark.<n>First, we introduce SAMA-239K, a large-scale dataset comprising 15K videos specifically to enable joint learning of video understanding, grounding, and multi-turn video chat.<n>Second, we propose the SAMA model, which incorporates a versatile-temporal context aggregator and a Segment Model to jointly enhance fine-grained video comprehension and precise grounding capabilities.
arXiv Detail & Related papers (2025-05-24T18:13:16Z) - FaVChat: Unlocking Fine-Grained Facial Video Understanding with Multimodal Large Language Models [12.029771909598647]
FaVChat is the first VMLLM specifically designed for fine-grained facial video understanding.<n>We construct a large-scale facial video dataset comprising over 60k videos, with the majority annotated with 83 fine-grained facial attributes.<n>We employ a progressive training paradigm, transitioning from video summarization to a high-quality subset of video QA, gradually increasing task complexity to enhance the model's fine-grained visual perception.
arXiv Detail & Related papers (2025-03-12T08:33:46Z) - VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM [81.15525024145697]
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding.
However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details.
We introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding.
arXiv Detail & Related papers (2024-12-31T18:56:46Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
We introduce SALOVA: Segment-Augmented Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content.
We present a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich context.
Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries.
arXiv Detail & Related papers (2024-11-25T08:04:47Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding [67.56182262082729]
We introduce MMBench-Video, a quantitative benchmark to rigorously evaluate large vision-language models (LVLMs) in video understanding.
MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases.
The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.
arXiv Detail & Related papers (2024-06-20T17:26:01Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
We present the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES)
CVRR-ES comprehensively assesses the performance of Video-LMMs across 11 diverse real-world video dimensions.
Our findings provide valuable insights for building the next generation of human-centric AI systems.
arXiv Detail & Related papers (2024-05-06T17:59:45Z) - Grounded Question-Answering in Long Egocentric Videos [39.281013854331285]
open-ended question-answering (QA) in long, egocentric videos allows individuals or robots to inquire about their own past visual experiences.
This task presents unique challenges, including the complexity of temporally grounding queries within extensive video content.
Our proposed approach tackles these challenges by (i) integrating query grounding and answering within a unified model to reduce error propagation.
arXiv Detail & Related papers (2023-12-11T16:31:55Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
We introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information.
At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings.
At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer.
arXiv Detail & Related papers (2023-12-04T19:48:02Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z) - MVBench: A Comprehensive Multi-modal Video Understanding Benchmark [63.14000659130736]
We introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench.
We first introduce a novel static-to-dynamic method to define these temporal-related tasks.
Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task.
arXiv Detail & Related papers (2023-11-28T17:59:04Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
Multi-temporal language models (LM) have recently shown promising performance in high-level reasoning tasks on videos.
We propose training an LM end-to-end on low-level surrogate tasks, including object detection, re-identification, tracking, to endow the model with the required low-level visual capabilities.
We demonstrate the effectiveness of our framework on diverse visual reasoning tasks from the ACRE, CATER, Something-Else and STAR datasets.
arXiv Detail & Related papers (2023-06-30T16:31:14Z) - FunQA: Towards Surprising Video Comprehension [64.58663825184958]
We introduce FunQA, a challenging video question-answering dataset.
FunQA covers three previously unexplored types of surprising videos: HumorQA, CreativeQA, and MagicQA.
In total, the FunQA benchmark consists of 312K free-text QA pairs derived from 4.3K video clips.
arXiv Detail & Related papers (2023-06-26T17:59:55Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
We propose verbalizing long videos to generate descriptions in natural language, then performing video-understanding tasks on the generated story as opposed to the original video.
Our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding.
To alleviate a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science on persuasion strategy identification.
arXiv Detail & Related papers (2023-05-16T19:13:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.