論文の概要: FxTS-Net: Fixed-Time Stable Learning Framework for Neural ODEs
- arxiv url: http://arxiv.org/abs/2411.09118v1
- Date: Thu, 14 Nov 2024 01:37:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:36.114933
- Title: FxTS-Net: Fixed-Time Stable Learning Framework for Neural ODEs
- Title(参考訳): FxTS-Net:ニューラルネットワークのための固定時間安定学習フレームワーク
- Authors: Chaoyang Luo, Yan Zou, Wanying Li, Nanjing Huang,
- Abstract要約: 固定時間安定(FxTS)リアプノフ条件を用いたニューラルODEの学習法を提案する。
我々のフレームワークはFxTS-Netと呼ばれ、リアプノフ関数に基づいて設計された新しいFxTS損失(FxTS-Loss)に基づいている。
FxTS-Netは入力摂動下での予測性能とロバスト性を向上させる。
- 参考スコア(独自算出の注目度): 0.48123217909844934
- License:
- Abstract: Neural Ordinary Differential Equations (Neural ODEs), as a novel category of modeling big data methods, cleverly link traditional neural networks and dynamical systems. However, it is challenging to ensure the dynamics system reaches a correctly predicted state within a user-defined fixed time. To address this problem, we propose a new method for training Neural ODEs using fixed-time stability (FxTS) Lyapunov conditions. Our framework, called FxTS-Net, is based on the novel FxTS loss (FxTS-Loss) designed on Lyapunov functions, which aims to encourage convergence to accurate predictions in a user-defined fixed time. We also provide an innovative approach for constructing Lyapunov functions to meet various tasks and network architecture requirements, achieved by leveraging supervised information during training. By developing a more precise time upper bound estimation for bounded non-vanishingly perturbed systems, we demonstrate that minimizing FxTS-Loss not only guarantees FxTS behavior of the dynamics but also input perturbation robustness. For optimising FxTS-Loss, we also propose a learning algorithm, in which the simulated perturbation sampling method can capture sample points in critical regions to approximate FxTS-Loss. Experimentally, we find that FxTS-Net provides better prediction performance and better robustness under input perturbation.
- Abstract(参考訳): ニューラルネットワークと力学系を巧みにリンクする、ビッグデータメソッドをモデリングする新しいカテゴリとして、ニューラル正規微分方程式(Neural Ordinary Differential Equations、Neural ODEs)がある。
しかし、ユーザ定義の一定時間内に、動的システムが正確に予測された状態に達することを保証することは困難である。
この問題に対処するために,固定時間安定(FxTS)リアプノフ条件を用いたニューラルODEのトレーニング手法を提案する。
我々のフレームワークはFxTS-Netと呼ばれ、Lyapunov関数に基づいて設計された新しいFxTS損失(FxTS-Loss)に基づいている。
また,学習中に教師付き情報を活用することにより,様々なタスクやネットワークアーキテクチャ要件を満たすために,リアプノフ関数を構築するための革新的なアプローチも提供する。
FxTS-Lossの最小化は力学のFxTS挙動を保証するだけでなく、入力摂動ロバスト性も保証する。
また,FxTS-Lossを最適化するために,FxTS-Lossを近似するために,FxTS-Lossの臨界領域のサンプル点をシミュレーション摂動サンプリング法により抽出できる学習アルゴリズムを提案する。
実験により,FxTS-Netは入力摂動下での予測性能とロバスト性を向上することがわかった。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
ニューラル常微分方程式(NODE)を学習するためのシミュレーション不要なフレームワークを提案する。
フーリエ解析を用いて、ノイズの多い観測データから時間的および潜在的高次空間勾配を推定する。
我々の手法は、トレーニング時間、ダイナミクス予測、堅牢性の観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-19T13:15:23Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Optimal Transport-inspired Deep Learning Framework for Slow-Decaying
Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel [0.0]
還元次数モデル(ROM)は、高次元システムに対処するために科学計算で広く使われている。
最適輸送理論とニューラルネットワークに基づく手法を統合した新しいROMフレームワークを提案する。
我々のフレームワークは、精度と計算効率の点で従来のROM手法より優れています。
論文 参考訳(メタデータ) (2023-08-26T10:24:43Z) - Spintronics for image recognition: performance benchmarking via
ultrafast data-driven simulations [4.2412715094420665]
単一スピントロニクスナノ構造を用いたエコー状態ネットワーク(ESN)による画像分類の実証を行った。
我々は、STVO力学をシミュレートするために、データ駆動型Thiele方程式アプローチと呼ばれる超高速なデータ駆動シミュレーションフレームワークを用いる。
我々は、MNIST、EMNIST-letters、Fashion MNISTデータセットで分類課題を解決するために、この手法をうまく適用することで、ソリューションの汎用性を示す。
論文 参考訳(メタデータ) (2023-08-10T18:09:44Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
本稿では時系列行動の分類のための説明可能なニューラルネットワーク・シンボリック・フレームワークを提案する。
提案手法の計算効率, コンパクト性, 解釈可能性について, シナリオの駆動と海軍の監視事例研究を通じて実証する。
論文 参考訳(メタデータ) (2022-10-04T21:11:54Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow Learning Networks (FSNet)は、オンライン時系列予測のための総合的なフレームワークである。
FSNetは、最近の変更への迅速な適応と、同様の古い知識の取得のバランスを取る。
私たちのコードは公開されます。
論文 参考訳(メタデータ) (2022-02-23T18:23:07Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。