論文の概要: Unstructured Text Enhanced Open-domain Dialogue System: A Systematic Survey
- arxiv url: http://arxiv.org/abs/2411.09166v1
- Date: Thu, 14 Nov 2024 03:54:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:22:30.452532
- Title: Unstructured Text Enhanced Open-domain Dialogue System: A Systematic Survey
- Title(参考訳): 非構造化テキスト拡張オープンドメイン対話システム:システム的調査
- Authors: Longxuan Ma, Mingda Li, Weinan Zhang, Jiapeng Li, Ting Liu,
- Abstract要約: 本研究では,非構造化テキストを外部知識源として利用するオープンドメインDSについて検討する。
構造化されていないテキストの存在は、UTEDSと従来のデータ駆動DSの区別を必要とする。
UTEDSを検索モデルと生成モデルに分類し、モデルコンポーネントの観点から紹介する。
- 参考スコア(独自算出の注目度): 28.40157231931982
- License:
- Abstract: Incorporating external knowledge into dialogue generation has been proven to benefit the performance of an open-domain Dialogue System (DS), such as generating informative or stylized responses, controlling conversation topics. In this article, we study the open-domain DS that uses unstructured text as external knowledge sources (\textbf{U}nstructured \textbf{T}ext \textbf{E}nhanced \textbf{D}ialogue \textbf{S}ystem, \textbf{UTEDS}). The existence of unstructured text entails distinctions between UTEDS and traditional data-driven DS and we aim to analyze these differences. We first give the definition of the UTEDS related concepts, then summarize the recently released datasets and models. We categorize UTEDS into Retrieval and Generative models and introduce them from the perspective of model components. The retrieval models consist of Fusion, Matching, and Ranking modules, while the generative models comprise Dialogue and Knowledge Encoding, Knowledge Selection, and Response Generation modules. We further summarize the evaluation methods utilized in UTEDS and analyze the current models' performance. At last, we discuss the future development trends of UTEDS, hoping to inspire new research in this field.
- Abstract(参考訳): 対話生成に外部知識を組み込むことは、情報やスタイル化された応答を生成し、会話トピックを制御するなど、オープンドメイン対話システム(DS)の性能向上に寄与することが証明されている。
本稿では、非構造化テキストを外部知識源として利用するオープンドメインDSについて検討する(\textbf{U}nstructured \textbf{T}ext \textbf{E}nhanced \textbf{D}ialogue \textbf{S}ystem, \textbf{UTEDS})。
非構造化テキストの存在は、UTEDSと従来のデータ駆動DSの区別を伴い、これらの違いを分析することを目的としている。
まず、UTEDSに関する概念を定義し、次に最近リリースされたデータセットとモデルを要約する。
UTEDSを検索モデルと生成モデルに分類し、モデルコンポーネントの観点から紹介する。
検索モデルはFusion, Matching, Rankingモジュールで構成され、生成モデルはダイアログとナレッジエンコーディング、ナレッジセレクション、レスポンスジェネレーションモジュールで構成されている。
さらに、UTEDSで使用される評価手法を要約し、現在のモデルの性能を解析する。
最後に, UTEDSの今後の発展動向について論じ, この分野における新たな研究の活性化を期待する。
関連論文リスト
- Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
知識グラフ(KG)から構造化文書関係を付加したLLMを拡張した知識対応クエリ拡張フレームワークを提案する。
文書テキストをリッチなKGノード表現として活用し、KAR(Knowledge-Aware Retrieval)のための文書ベースの関係フィルタリングを利用する。
論文 参考訳(メタデータ) (2024-10-17T17:03:23Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - GPT Struct Me: Probing GPT Models on Narrative Entity Extraction [2.049592435988883]
我々は,2つの最先端言語モデル(GPT-3とGPT-3.5)の物語の抽出能力を評価する。
本研究はポルトガルの119のニュース記事を集めたText2Story Lusaデータセットを用いて行った。
論文 参考訳(メタデータ) (2023-11-24T16:19:04Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - An Overview on Controllable Text Generation via Variational
Auto-Encoders [15.97186478109836]
ニューラルベース生成モデリングの最近の進歩は、コンピュータシステムが人間と会話できるという期待を再燃させた。
変分自動エンコーダ(VAE)のような潜在変数モデル(LVM)は、テキストデータの分布パターンを特徴付けるように設計されている。
この概要は、既存の生成方式、テキスト変分自動エンコーダに関連する問題、および制御可能な生成に関するいくつかのアプリケーションについて概説する。
論文 参考訳(メタデータ) (2022-11-15T07:36:11Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Pre-training Language Model Incorporating Domain-specific Heterogeneous Knowledge into A Unified Representation [49.89831914386982]
本研究では, 構造化されていないテキスト, 半構造化されたテキスト, 十分に構造化されたテキストを含む, あらゆる形式のテキストに対して, 統一された事前学習言語モデル (PLM) を提案する。
提案手法は,データの1/4のみを用いて,プレーンテキストの事前学習に優れる。
論文 参考訳(メタデータ) (2021-09-02T16:05:24Z) - A Framework for Neural Topic Modeling of Text Corpora [6.340447411058068]
テキストの特徴を抽出し,組み込むための効率的なメカニズムを実現するためのオープンソースフレームワークであるFAMEを紹介した。
本ライブラリの有効性を示すために,よく知られたNews-Groupデータセットの実験を行った。
論文 参考訳(メタデータ) (2021-08-19T23:32:38Z) - Combining pre-trained language models and structured knowledge [9.521634184008574]
トランスフォーマーベースの言語モデルは、様々なNLPベンチマークにおいて、最先端の性能を実現している。
これらのモデルに知識グラフのような構造化情報を統合することは困難であることが証明されている。
構造化された知識を現在の言語モデルに統合し、課題を決定するための様々なアプローチについて検討し、構造化された情報ソースと非構造化された情報ソースの両方を活用する機会について検討する。
論文 参考訳(メタデータ) (2021-01-28T21:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。