論文の概要: Classical Verification of Quantum Learning Advantages with Noises
- arxiv url: http://arxiv.org/abs/2411.09210v1
- Date: Thu, 14 Nov 2024 06:14:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:51.613915
- Title: Classical Verification of Quantum Learning Advantages with Noises
- Title(参考訳): 雑音を考慮した量子学習手法の古典的検証
- Authors: Yinghao Ma, Jiaxi Su, Dong-Ling Deng,
- Abstract要約: 本稿では,量子フーリエサンプリング回路で得られるノイズのない結果を再構成する,効率的な古典的誤り訂正アルゴリズムを提案する。
また、ランダムな例のオラクルにアクセス可能な古典的クライアントは、ノイズのある量子証明器によるパリティ学習結果の検証も可能であることを証明した。
- 参考スコア(独自算出の注目度): 0.27930367518472443
- License:
- Abstract: Classical verification of quantum learning allows classical clients to reliably leverage quantum computing advantages by interacting with untrusted quantum servers. Yet, current quantum devices available in practice suffers from a variety of noises and whether existed classical verification protocols carry over to noisy scenarios remains unclear. Here, we propose an efficient classical error rectification algorithm to reconstruct the noise-free results given by the quantum Fourier sampling circuit with practical constant-level noises. In particular, we prove that the error rectification algorithm can restore the heavy Fourier coefficients by using a small number of noisy samples that scales logarithmically with the problem size. We apply this algorithm to the agnostic parity learning task with uniform input marginal and prove that this task can be accomplished in an efficient way on noisy quantum devices with our algorithm. In addition, we prove that a classical client with access to the random example oracle can verify the agnostic parity learning results from the noisy quantum prover in an efficient way, under the condition that the Fourier coefficients are sparse. Our results demonstrate the feasibility of classical verification of quantum learning advantages with noises, which provide a valuable guide for both theoretical studies and practical applications with current noisy intermediate scale quantum devices.
- Abstract(参考訳): 古典的な量子学習の検証により、古典的なクライアントは信頼できない量子サーバーと対話することで、量子コンピューティングの利点を確実に活用することができる。
しかし、現実に利用可能な現在の量子デバイスは様々なノイズに悩まされており、既存の古典的な検証プロトコルがノイズの多いシナリオに受け継がれているかどうかは不明だ。
そこで本研究では,量子フーリエサンプリング回路によって得られるノイズのない結果を,実用的な定レベルノイズで再構成する,効率的な古典的誤り訂正アルゴリズムを提案する。
特に,誤差補正アルゴリズムは,問題サイズと対数的にスケールする少数のノイズサンプルを用いることで,重大フーリエ係数を復元できることを示す。
我々は,このアルゴリズムを一様入力境界を持つ非正規パリティ学習タスクに適用し,本アルゴリズムを用いて雑音の多い量子デバイス上で効率よく実現可能であることを証明した。
さらに、ランダムな例のオラクルにアクセス可能な古典的クライアントは、フーリエ係数がスパースである条件下で、ノイズ量子証明器からの非正規パリティ学習結果を効率よく検証できることを示す。
本研究は,雑音による量子学習の古典的検証の実現可能性を示すものである。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - Classical Verification of Quantum Learning [42.362388367152256]
量子学習の古典的検証のための枠組みを開発する。
そこで我々は,新しい量子データアクセスモデルを提案し,これを"mixture-of-superpositions"量子例と呼ぶ。
この結果から,学習課題における量子データの潜在能力は無限ではないものの,古典的エージェントが活用できることが示唆された。
論文 参考訳(メタデータ) (2023-06-08T00:31:27Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
量子ランダムな回転雑音を加えることで、敵攻撃に対する量子分類器のロバスト性を向上できることを示す。
我々は、量子分類器が敵の例に対して防御できるように、証明された堅牢性を導出する。
論文 参考訳(メタデータ) (2022-11-02T05:17:04Z) - Probabilistic error cancellation with sparse Pauli-Lindblad models on
noisy quantum processors [0.7299729677753102]
本稿では,大規模量子デバイスに相関するノイズやスケールを捕捉できるスパースノイズモデルを学習し,逆転するプロトコルを提案する。
これらの進歩により、クロストークエラーを伴う超伝導量子プロセッサ上でのPECの実証が可能となった。
論文 参考訳(メタデータ) (2022-01-24T18:40:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Universal Dephasing Noise Injection via Schrodinger Wave Autoregressive
Moving Average Models [0.619788266425984]
本稿では,量子回路における任意のスペクトルのノイズ注入法を提案する。
この方法は、クラウドベースの量子プロセッサを含む任意の単一量子ビット回転を実行することができる任意のシステムに適用することができる。
論文 参考訳(メタデータ) (2021-02-05T19:00:08Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Efficient classical simulation and benchmarking of quantum processes in
the Weyl basis [0.0]
Weylユニタリを用いたランダム化ベンチマークアルゴリズムを開発し,エラーモデルの混在を効率よく同定し,学習する。
本手法を変分量子固有解器に現れるアンザッツ回路に適用する。
論文 参考訳(メタデータ) (2020-08-27T16:46:12Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
我々は、雑音に対する量子機械学習アルゴリズムの検証と解析のための正式なフレームワークを定義する。
堅牢な境界が導出され、量子機械学習アルゴリズムが量子トレーニングデータに対して堅牢であるか否かを確認するアルゴリズムが開発された。
我々のアプローチはGoogleのQuantum分類器に実装されており、ノイズの小さな乱れに関して量子機械学習アルゴリズムの堅牢性を検証することができる。
論文 参考訳(メタデータ) (2020-08-17T11:56:23Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。