論文の概要: Compression Method for Solar Polarization Spectra Collected from Hinode SOT/SP Observations
- arxiv url: http://arxiv.org/abs/2411.09311v1
- Date: Thu, 14 Nov 2024 09:38:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:22.265258
- Title: Compression Method for Solar Polarization Spectra Collected from Hinode SOT/SP Observations
- Title(参考訳): 陽極SOT/SP観測から得られた太陽偏光スペクトルの圧縮法
- Authors: Jargalmaa Batmunkh, Yusuke Iida, Takayoshi Oba, Haruhisa Iijima,
- Abstract要約: 本研究では, ディープオートエンコーダ(DAE)と1D畳み込みオートエンコーダ(CAE)モデルを用いて, Hinode SOT/SPデータを用いた深層学習に基づく圧縮手法を提案する。
我々は、静かな太陽と活動領域からストークスIとVの偏光スペクトルを圧縮することに焦点を当てた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The complex structure and extensive details of solar spectral data, combined with a recent surge in volume, present significant processing challenges. To address this, we propose a deep learning-based compression technique using deep autoencoder (DAE) and 1D-convolutional autoencoder (CAE) models developed with Hinode SOT/SP data. We focused on compressing Stokes I and V polarization spectra from the quiet Sun, as well as from active regions, providing a novel insight into comprehensive spectral analysis by incorporating spectra from extreme magnetic fields. The results indicate that the CAE model outperforms the DAE model in reconstructing Stokes profiles, demonstrating greater robustness and achieving reconstruction errors around the observational noise level. The proposed method has proven effective in compressing Stokes I and V spectra from both the quiet Sun and active regions, highlighting its potential for impactful applications in solar spectral analysis, such as detection of unusual spectral signals.
- Abstract(参考訳): 太陽スペクトルデータの複雑な構造と広範な詳細は、近年の体積増加と相まって、重要な処理課題を呈している。
そこで我々は,Hinode SOT/SPデータを用いた深層オートエンコーダ(DAE)と1D畳み込みオートエンコーダ(CAE)モデルを用いた深層学習に基づく圧縮手法を提案する。
我々は、静かな太陽からのストークスIとVの偏光スペクトルと活動領域からのスペクトルを圧縮することに集中し、極磁場からのスペクトルを取り入れた包括的スペクトル分析に関する新たな知見を提供した。
その結果,CAEモデルはストークスプロファイルの再構成においてDAEモデルよりも優れており,ロバスト性が向上し,観測騒音レベルの周囲の再構成誤差が達成された。
提案手法は、静かな太陽と活動領域の両方からのストークスIとVのスペクトルの圧縮に有効であることが証明されており、異常なスペクトル信号の検出などの太陽スペクトル分析における影響の高い応用の可能性を強調している。
関連論文リスト
- Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
ハイパースペクトル画像分割のための多種多様なディープラーニングアーキテクチャの性能を評価する。
その結果,空間情報をスペクトルデータと組み合わせることで,セグメンテーション結果が改善された。
我々は、Tecnalia WEEE Hyperspectralデータセットのクリーニングと公開によって、この分野に貢献する。
論文 参考訳(メタデータ) (2024-07-05T13:45:11Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - deep-REMAP: Parameterization of Stellar Spectra Using Regularized
Multi-Task Learning [0.0]
確率的推論のための非対称損失をもつ深層正規化アンサンブルに基づくマルチタスク学習(rmdeep-REMAP$)
我々は、PHOENIXライブラリからのリッチな合成スペクトルと、MARVELSサーベイからの観測データを利用して、恒星の大気パラメータを正確に予測する新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2023-11-07T05:41:48Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
ハイパースペクトル画像分類(HSIC)タスクでは、最も一般的に使われているモデル検証パラダイムは、画素単位のランダムサンプリングによってトレーニング・テストデータセットを分割することである。
私たちの実験では、トレーニングとテストデータセットが多くの情報を共有しているため、高い精度が達成できたことが分かりました。
本稿では,データセット分割間の一般化を保ったスペクトル-空間軸アグリゲーション変換器モデルSaaFormerを提案する。
論文 参考訳(メタデータ) (2023-06-29T07:55:43Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
本研究では,HARPS-N線速度スペクトルから高精度の太陽スペクトルを抽出するニューラルネットワークオートエンコーダ手法を提案する。
論文 参考訳(メタデータ) (2021-11-17T12:54:48Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - Spatial-Spectral Manifold Embedding of Hyperspectral Data [43.479889860715275]
本稿では,空間情報とスペクトル情報を同時に考慮した新しいハイパースペクトル埋め込み手法を提案する。
空間スペクトル多様体埋め込み(SSME)は、パッチベースの方法で空間情報とスペクトル情報を共同でモデル化する。
SSMEは、スペクトルシグネチャ間の類似度測定によって得られた隣接行列を用いてスペクトル埋め込みを学習するだけでなく、ハイパースペクトルシーンにおける対象画素の空間近傍をモデル化する。
論文 参考訳(メタデータ) (2020-07-17T05:40:27Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。