論文の概要: Prices, Bids, Values: Everything, Everywhere, All at Once
- arxiv url: http://arxiv.org/abs/2411.09355v1
- Date: Thu, 14 Nov 2024 10:56:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:49.360095
- Title: Prices, Bids, Values: Everything, Everywhere, All at Once
- Title(参考訳): 価格、バイド、価値:あらゆるもの、あらゆるもの、すべて一度に
- Authors: Ermis Soumalias, Jakob Heiss, Jakob Weissteiner, Sven Seuken,
- Abstract要約: 我々はイテレーティブオークション(ICA)の設計について研究する。
両問合せ型からの全情報を統合する新しい機械学習アルゴリズムを提案する。
これまでに設計された最も効率的なICAであるMLHCAを紹介します。
- 参考スコア(独自算出の注目度): 13.724491757145385
- License:
- Abstract: We study the design of iterative combinatorial auctions (ICAs). The main challenge in this domain is that the bundle space grows exponentially in the number of items. To address this, several papers have recently proposed machine learning (ML)-based preference elicitation algorithms that aim to elicit only the most important information from bidders to maximize efficiency. The SOTA ML-based algorithms elicit bidders' preferences via value queries (i.e., "What is your value for the bundle $\{A,B\}$?"). However, the most popular iterative combinatorial auction in practice elicits information via more practical \emph{demand queries} (i.e., "At prices $p$, what is your most preferred bundle of items?"). In this paper, we examine the advantages of value and demand queries from both an auction design and an ML perspective. We propose a novel ML algorithm that provably integrates the full information from both query types. As suggested by our theoretical analysis, our experimental results verify that combining demand and value queries results in significantly better learning performance. Building on these insights, we present MLHCA, the most efficient ICA ever designed. MLHCA substantially outperforms the previous SOTA in realistic auction settings, delivering large efficiency gains. Compared to the previous SOTA, MLHCA reduces efficiency loss by up to a factor of 10, and in the most challenging and realistic domain, MLHCA outperforms the previous SOTA using 30% fewer queries. Thus, MLHCA achieves efficiency improvements that translate to welfare gains of hundreds of millions of USD, while also reducing the cognitive load on the bidders, establishing a new benchmark both for practicability and for economic impact.
- Abstract(参考訳): 本稿では,イテレーティブ・コンビナトリ・オークション (ICA) の設計について検討する。
この領域の主な課題は、バンドル空間がアイテム数で指数関数的に増加することである。
これを解決するために、いくつかの論文が最近、入札者から最も重要な情報のみを抽出して効率を最大化する機械学習(ML)ベースの選好推論アルゴリズムを提案している。
SOTA ML ベースのアルゴリズムは、入札者の好みを値クエリ(つまり、バンドル $\{A,B\}$?
しかし、実際に最も人気のある反復的組み合わせオークションは、より実用的な 'emph{demand query} を通じて情報を引き出すものである(つまり、"At price $p$, your most preferred bundle of items?
本稿では,オークションデザインとMLの両面から,価値と需要の問合せの利点を考察する。
両問合せ型の全情報を確実に統合する新しいMLアルゴリズムを提案する。
理論分析によって示唆されたように,本実験の結果,需要と価値クエリの組み合わせが学習性能を著しく向上させることを確認した。
これらの知見に基づいて、これまでに設計された最も効率的なICAであるMLHCAを提示する。
MLHCAは、現実的なオークション設定で以前のSOTAを大幅に上回り、大きな効率向上をもたらす。
従来のSOTAと比較して、MLHCAは効率損失を最大10倍に減らし、最も困難で現実的な領域では、30%のクエリで従来のSOTAよりも優れていた。
このようにMLHCAは、数十億米ドルの福祉給付に換算して効率の向上を達成し、入札者の認知負荷を低減させ、実践性と経済への影響の両面での新しいベンチマークを確立した。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
本稿では,TIS-DPO と呼ばれるトークン単位の重要度サンプリング DPO の目的について,その報酬に基づいて各トークンに重要度を割り当てる手法を提案する。
TIS-DPOは、無害性、有用性アライメントおよび要約タスクにおいて、様々なベースライン手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-10-06T04:03:00Z) - MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs [21.689490112983677]
分類タスクに最適な大言語モデル(LLM)に各クエリを動的にルーティングするフレームワークであるMetaLLMを紹介する。
多武装バンディットとして選択問題をフレーミングすることで、MetaLLMは不確実性の下で予測精度とコスト効率のバランスをとる。
LLMプラットフォーム上で実施した本実験では,メタLLMの有効性を実世界のシナリオで示す。
論文 参考訳(メタデータ) (2024-07-15T15:45:07Z) - Cost-Effective Proxy Reward Model Construction with On-Policy and Active Learning [70.22819290458581]
人間のフィードバックによる強化学習(RLHF)は、現在の大規模言語モデルパイプラインにおいて広く採用されているアプローチである。
提案手法では,(1)OODを回避するためのオン・ポリシー・クエリと,(2)プライオリティ・クエリの最も情報性の高いデータを選択するためのアクティブ・ラーニングという2つの重要なイノベーションを導入している。
論文 参考訳(メタデータ) (2024-07-02T10:09:19Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Reinforcement Learning from Human Feedback with Active Queries [67.27150911254155]
現在の強化学習アプローチは、多くの場合、大量の人間による嗜好データを必要とする。
本稿では,能動学習の成功に触発されたクエリ効率の高いRLHF手法を提案する。
実験の結果,ADPOは人間の好みに対するクエリの約半分しか作成していないが,最先端のDPO法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2024-02-14T18:58:40Z) - Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models [69.51130760097818]
本研究では,報奨誘導型ルーティング手法であるZooterを提案する。
さまざまなドメインやタスクについて26のサブセットを持つ総合的なベンチマークコレクション上でZooterを評価する。
論文 参考訳(メタデータ) (2023-11-15T04:40:43Z) - Machine Learning-Powered Combinatorial Clock Auction [13.724491757145385]
我々はイテレーティブオークション(ICA)の設計について研究する。
本稿では,要求クエリに基づいてMLモデルをトレーニングする新しい手法を提案する。
いくつかのスペクトルオークション領域におけるMLベースの需要メカニズムを実験的に評価した。
論文 参考訳(メタデータ) (2023-08-20T10:43:50Z) - Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce
Advertising [42.7415188090209]
我々は,オークションからコンテキストを効率的に抽出する深層モデルを開発し,オークションデザインのための豊富な特徴を提供する。
タオバオのEコマース広告システムにDNAが配備されている。
論文 参考訳(メタデータ) (2021-06-07T13:20:40Z) - A Game-Theoretic Analysis of the Empirical Revenue Maximization
Algorithm with Endogenous Sampling [19.453243313852557]
実証収益最大化(ERM)はオークションデザインにおいて最も重要な価格学習アルゴリズムの1つである。
我々は、Laviらによって提案されたインセンティブ認識尺度の定義を一般化し、$N$の入力サンプルから$mge 1$の変化によるERMの出力価格の低減を定量化する。
本研究では, 単価オークションにおいて, 単価オークションにおけるグループインセンティブ・コンパチビリティを近似的に示すために, ERM を用いた効率よく, ほぼインセンティブに適合し, 収益に最適な学習アルゴリズムを構築した。
論文 参考訳(メタデータ) (2020-10-12T08:20:35Z) - Auction learning as a two-player game [19.706363403596196]
オークションデザイン(Auction Design)は、固定ユーティリティ機能を備えた2人プレイのゲームである。
期待収益を最大化するインセンティブをデザインすることは、オークションデザインの中心的な問題である。
論文 参考訳(メタデータ) (2020-06-10T06:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。